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Abstract—The Robot Operating System (ROS) streamlines
human processes, increasing the efficiency of various production
tasks. However, the security of data transfer operations in ROS
is still in its immaturity. Securing data exchange between several
robots is a significant problem. This paper proposes AuthROS,
an Ethereum blockchain-based secure data sharing method, for
robot communication. It is a ROS node authorization system
capable of ensuring the immutability and security of private
data flow between ROS nodes of any size. To ensure data
security, AuthROS employs the smart contract for permission
granting and identification, SM2-based key exchange, and SM4-
based plaintext encryption techniques. In addition, we deploy
a data digest upload technique to optimize data query and
upload performance. Finally, the experimental findings reveal
that AuthROS has strong security, time performance, and node
forging in cases where data should be recorded and robots need
to remain immobile.
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I. INTRODUCTION

The Robot Operating System (ROS) [1]] is an open-source
meta-operating system for robots. It is a distributed multi-
process framework based on message communication. ROS is
designed to improve the code reuse rate in the field of robotics
research and development. ROS provides functions similar to
those provided by operating systems (OS), such as hardware
abstraction description, low-level driver management, etc. The
essence of ROS is a TCP/IP-based Socket communication
mechanism [2], which is capable of performing several types
of communication, such as service-based synchronous RPC
communication, topic-based asynchronous data stream com-
munication, and parameter server-based data storage. This
flexible framework enables different modules of ROS to be
designed separately and loosely coupled at runtime.

However, there are some obvious drawbacks to ROS [3]-
[5]. First of all, ROS lacks measures to ensure data security.
Attackers can steal data from ROS utilizing the Publisher-
Subscriber mode, which endangers the immobility and safety
of data. In addition, ROS also has problems with data re-
liability, and data passed among ROS nodes based on this
framework can be intercepted or forged [6]]. For example,
these defects in autonomous driving would result in a serious
accident. These two defects lead to insecure and unstable data
exchange and sharing in the scenario of multi-robot interaction
based on ROS.

Furthermore, the issues raised by ROS had been alleviated
with the assistance of SROS [7]], a typical scheme based

¥ The corresponding authors.

How to realize secure
and convenient data

sharing between the
two robots?

Located in region 1

Located in region 2

Located in region 2

\ M
.

msg2 msg2
Located in region 1

AuthROS based on Ethereum

Figure 1. The design idea of the AuthROS framework. To reduce the risk
brought by attacks during data sharing in ROS, Ethereum is used to design
this data sharing framework.

on Transport Layer Security (TLS) and certificate mecha-
nisms. In the ROS 2.0 phase, integrating Data Distribution
Service (DDS) components and SROS enhances the scheme’s
authorization and access control security. ROS 2.0 imple-
ments centralized access control utilizing policies including
permission control and certificate signing. The DDS security
standard indicators [8]] include Authentication, Access Control,
Cryptographic, Logging, and Data Tagging. The ROS 2.0
have not achieved Logging and Data Tagging, specifically, the
capacity to record data and behaviour. As a result, when an
attacker gains central control, the data can be manipulated
directly, and there is no way to trace back error information.

Therefore, we leverage Ethereum blockchain [[10] to solve
the above drawbacks and propose a novel framework named
AuthROS (Authority in Robot Operating Systems), whose
design idea is shown in Fig. [T] In order to ensure the security
of the entire communication network and data, AuthROS
leverages a series of remarkable cryptographic algorithms, i.e.,
the SM algorithm family [[11]. At present, three types of algo-
rithms are mainly applied: SM2, SM3, and SM4 [11]. Based
on the SM algorithms and blockchain technology, we can
finally solve the existing defects of ROS. AuthROS achieves
an efficient and secure data sharing framework for ROS based
on blockchain technology, Web3, and SM algorithms. And due
to the data traceability of blockchain systems, data logging for
monitoring abnormal node behavior can be achieved. It allows
critical data captured by robots shared by other robots with
authority in the same Ethereum network.

At the same time, the confidential data is also stored in
the Ethereum network for later check. Furthermore, it has
virtually no restrictions on the types of data, most types of
messages are supported to interact with the Ethereum network.
The algorithm encryption system based on the SM algorithm



family can effectively ensure the security of data transmission.
The main contributions of this paper are as follows:

(1) We propose a novel framework called AuthROS based
on blockchain technology. To the best of our knowledge,
it is the first secure data-sharing framework for robots
loaded with ROS.

(2) AuthROS has a functionality of authority granting con-
trolling access to specified confidential data transmit-
ted among ROS. Furthermore, it can conduct secure
encrypted communication leveraging SM algorithms to
prevent attacks (e.g., Node Forging).

(3) AuthROS achieves a secure, reliable, and convenient
interaction solution for ROS-based robots leveraging the
Ethereum blockchain. Evaluation of the process for gen-
erating digest from 800KB encrypted data reveals that
AuthROS is efficient, completing in 6.34ms.

The rest of this paper is organized as follows. Section
2 introduces the background and Section 3 summarize the
related work. Section 4 introduces the framework of AuthROS.
Then we analyzes the results of evaluation experiments in
Section 5 and finally conclude the paper in Section 6.

II. BACKGROUND

In this section, we introduce ROS and Ethereum, since
AuthROS consists of the ROS system and the Ethereum
network.

A. ROS.

ROS is a distributed process framework to promote the
high reusability of robotic software systems. It is an open-
source, meta-operating system that provides adaptable and
practical qualities for robot manipulations [9]. Some abstrac-
tions in ROS developed from the OS offer services comparable
to the operating system, including standard hardware APIs,
low-level device management, message transmission between
nodes, and package management for application distribution.
ROS also includes a Peer-to-Peer (P2P) network topology
that blends service-based synchronous Remote Procedure Call
(RPC) communication, topic-based asynchronous data flow
communication, and others.

Terms. Each of the software modules is a node [1]. And
the nodes communicate with each other by passing messages,
which are strongly typed and support multiple nesting. Another
“odometry” or “map” type term is “topic,” which refers to
a way of communication in nodes, from which numerous
publishers and subscribers complete the message transmission.
Finally, a service consists of a string name, a request message,
and a response message. However, the network communication
protocol it uses does not handle synchronous transactions.

B. Ethereum.

Ethereum [10], a popular blockchain platform, is another
helpful technology. Blockchain technology aims to record all
transactions in the network to safeguard data. It generates
users’ addresses using elliptic curve algorithms and hashing
algorithms before authenticating transactions.

Geth. Geth is an Ethereum client built in Golang language,
and the local machine can join the Ethereum P2P network as
a node after the running of Geth [26]. In this paper, the Geth
is used to build an Ethereum private network. Ethereum sup-
ports Externally Owned Accounts (EOA) and smart contract
accounts. With the exception of the network administrator,
who has a contract account, all AuthROS robots are associated
with EOA accounts. The first 20 bytes of the SHA3 hash of
a user’s public key serve as the account’s index [27].

Consensus Algorithms. Consensus algorithms provide the
immutability, automation, and anonymity of blockchain trans-
actions. Consensus algorithms maintain the meaning and value
of blockchain technology as a distributed database. It ensures
that the states of the blocks on the chain remain consistent.
Proof of Work (PoW) [27], Proof of Authority (PoA) [2§]]
are the consensus methods for Ethereum in AuthROS. Nodes
in networks using PoW and PoA consensus algorithms have
different roles as miners or validators. POW relies on mining
operations to validate blocks, whereas PoA employs trusted
nodes that are pre-authorized.

Smart Contract. The smart contract is an executable soft-
ware program that can be interacted with peers on the net-
work [29]. It has increased the scalability of blockchain. Users
can execute customized transaction rules in smart contracts,
and transactions are irreversible once completed. Additionally,
smart contracts can be programmed in a Turing complete
language known as Solidity, Vyper, etc. Peer-based decision-
making is enabled through carefully built smart contracts in
applications such as IoT, multi-robot systems, and smart cities.

III. RELATED WORK

Large-scale applications of robots will inevitably involve
many problems, such as the security of data transmission, data
sharing, and the classical Byzantine problem [12]. With the
development of ROS 2.0, several studies have concentrated
on providing powerful tools for secure robots interactions, and
pursuing complete DDS standard indicators [8].

Sundaresan et al. [|13] proposed an access control strategy
based on IPSec to solve the problem of identity authentication
and encrypted robot communication. It ensured that IP packets
were encrypted and authenticated by modifying the master
node and client libraries. Nonetheless, it restrictd access due
to the control of user permissions through IP.

Ruffin et al. [7] proposed SROS, which was based on
Transport Layer Security (TLS) and certificate authentication
mechanisms to achieve identity authentication, encryption, and
access control of communication. Thus, ports are assigned to
robots at runtime. Multiple robots can access them simultane-
ously, with centralized access control ensured by the security
protocol and identity authentication mechanism.

Combining Datagram TLS and TLS, Breiling et al. [14]]
proposes a secure channel for node-to-node communication.
It requests the initial handshake using the certificate and RSA
encryption, which is encrypted using the AES algorithm. And
it utilizes Message Authentication Codes (MACs) following
data transmission to ensure data integrity.



However, none of the above work has solved the problem
of data traceability. Due to the information record function
and security performance of blockchain, it has been favored
by researchers in the robot community, and much research on
the integration of robots and blockchain has been carried out.

Some research focusing on swarm communication is listed
as follows. To combat COVID-19 and break through the
bottleneck of existing multi-swarming UAVs based on 5G,
Rajesh Gupta et al. [15] proposed a blockchain-envisioned
software multi-swarming UAV communication scheme based
on a 6G network with intelligent connectivity. Pranav K. Singh
et al. [[16] proposed an efficient communication framework
for swarm robotics based on PoA consensus to break through
the limitations of existing robotic control and communication
schemes. Eduardo Castell6 Ferrer et al. [[17] introduced the
first learning framework for secure, decentralized, and com-
putationally efficient data and model sharing among multiple
robot units installed at multiple sites. Pramod et al. [[18] used
a set of experiments to validate that Ethereum can be a secure
media for communication for multiple small Unmanned Aerial
Vehicles (sUAVs).

Research focus on secure information sharing also weighs
a lot. Alsamhi et al. [[19] proposed a framework to facili-
tate information sharing within multi-robot using Ethereum.
This framework proved to be effective. Nishida et al. [20]]
introduced a methodology to share information among au-
tonomous robots and demonstrated through experiments how
the differences in data size recorded in the blockchain affect
the chain size. Jorge Pefia Queralta et al. [21]] presented a
novel approach to managing collaboration terms in hetero-
geneous multi-robot systems with blockchain. This approach
can estimate the available computational resources of different
robots and integrate information about the environment from
different robots, to evaluate and rank the quality and accuracy
of each of the robots’ sensor data. Vasco Lopes et al. [22]]
proposed an architecture that uses blockchain as a ledger and
smart contract for robotic control by using external parties,
Oracles, to process data. The proposed architecture shows
great potential for secure information sharing between robots.

There comes the classic Byzantine problem with Robotic
swarms. In the survey of Eduardo Castello Ferrer et al. [23]],
a set of Byzantine Follow The Leader (BFTL) problems
were presented, and algorithms to tackle the BFTL problems
based on blockchain were proposed too. Alexandre Pacheco et
al. [24] presented a robot swarm composed of Pi-puck robots
that maintain a blockchain network. The blockchain served
as a security layer to neutralize Byzantine robots. Volker
Strobel et al. [25]] demonstrated how robotic swarms achieve
consensus in the presence of Byzantine robots exploiting
blockchain technology.

IV. FRAMEWORK AND ELEMENTS OF AUTHROS

In this section, we explain the AuthROS framework shar-
ing data based on the blockchain, the SM algorithms, and
ROS. AuthROS leverages encryption technology, consensus

mechanisms, and smart contract to assure security in the data
generation, transmission, and sharing process.

A. Assumptions.

To ensure the availability and efficiency of AuthROS, we
incorporate some assumptions into its design. The role of
AuthROS will likewise be heavily influenced by these assump-
tions. The following assumptions are made:

Blockchain Security. Due to the features of distribution and
encryption in blockchain, it possesses superior security perfor-
mance. Therefore, we assume that Ethereum, as a channel for
sharing information, is secure and trustworthy.

Robots Manager. We presume that any robot or robot
cluster is capable of maintaining by more than one manager
for data communication. These managers refer to the Core
Users of AuthROS (CURA), which serves as data sharing.

Identity Knowability. Different CURAs only employ Au-
thROS for data sharing after establishing a trusting connection.
In other words, the foundation of data exchange is that the
CURAs are confident with each other. Any CURA cannot
reveal the EOA address that confirms its identification to a
third party.

Unique Means of Sharing. CURAs will only exchange data
via AuthROS. It is essential for the accessibility of AuthROS.

Administrator. There is always an administrator on the
Ethereum private network who handles membership additions
and other emergencies.

Due to the immutability, semi-decentralization, and
anonymity of the private chain, it is ideally suited as a platform
for information sharing in AuthROS. The blockchain network
and hardware platform will then be described in depth.

B. Blockchain Network.

We select PoA and PoW as the consensus algorithms for
AuthROS on Ethereum. The characteristics of blockchain
networks based on two distinct consensus algorithms are as
follows:

Same Contract. No matter which consensus mechanism
the network is employed, we all utilize the same contract for
consistent internal interfaces.

Same Block Difficulty and Quantity of Users. To examine
the applicability of the consensus technique in the subsequent
tests, we not only simulate the same number of users in the
blockchain network based on the two consensuses, but also
we set the block difficulty to the same value in the genesis
block.

Ethereum is utilized to build the blockchain network of
AuthROS. The private network of AuthROS is developed
based on Geth. The smart contract is deployed with EVM
(Ethereum Virtual Machine). PoW and PoA are two different
consensus algorithms, and we evaluate the effects of the two
on the time performance of AuthROS. Furthermore, to address
the limited computing resources in smart terminal devices, we
build a private Ethereum network in the cloud server. The
robots can obtain the connection to the blockchain of AuthROS
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Figure 2. The framework of AuthROS. The User Interface, Blockchain Control Module, and Ethereum Network are represented by the green, blue, and
orange boxes, respectively. And the blue and black arrows are the flow of data and operations, respectively.

by the local ROS master running on the host with access to
the internet.

Due to the robot’s limited processing power, building an
Ethereum node there will encounter the computational bottle-
neck typical of Edge Computing. Therefore, as Fig. [3] depicted,
the Ethereum network composed of 3 nodes is implemented
using a host. The sole responsibility of the robot is to maintain
contact with the host’s ROS Master. If ROS is kept isolated
from the Ethereum network, the Edge Computing bottleneck
can be ignored. The miner node serves as the bootstrap node
and is in charge of bringing together other nodes to create
the overlay network. Moreover, to interact with the Ethereum
network, four ROS-Melodic robots are connected to two EOA
accounts in Node2 and Node3, respectively.
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Figure 3. The framework of the private Ethereum network of AuthROS. The
blockchain network is deployed in the cloud server and contains three nodes.
Miner Node is the boot node, which connects other nodes, such as Nodel and
Node2. All robots connect to the blockchain network through a node within
the ROS master in local ROS.

C. AuthROS Framework and Process

For the process of AuthROS in Fig. 2] users should first
upload their name/token key-value pairs. And an SM4 key
and an SM2 public key are required to authenticate the
digital signature, which is necessary for the Identity Check
and Authority Grant. Users can choose a topic to monitor
after registering the identification. The monitored topic often
forwards some essential information, such as the data in radar,
camera, and other sensors. As soon as the topic publishes
data, AuthROS will immediately launch a subscriber to capture
and parse the topic’s contents. The data will be delivered
to the network management module of AuthROS after being
encrypted by SM4 and signed by SM2. After the validation of
data ciphertext by the SM2 signature, the SM3 hash method
generates the data digest. The value of the digest will be posted
to the blockchain network. Users can grant access to their
shared data to other users on the chain. The user’s identity is
represented by a unique Ethereum external account (EOA) in
the Ethereum network, and authority is granted primarily via
the exchange of SM4 keys uploaded by the user.

This framework possesses the following characteristics:

Plasticity. The AuthROS uses a private chain, which is more
flexible in terms of block time and consensus conditions. And
the semi-decentralized structure of the private chain makes it
add new members to the network more conveniently.

Process Security. The AuthROS uses SM4, a symmetric
encryption technique, to encrypt all data transmission and
interaction operations. The data digest interaction system
combined with Identity Check and Authority Grant mechanism
can ensure data integrity, security, and immutability.

D. Data Sharing Protocol

In this section, we will introduce the core mechanism
in AuthROS, including the key distribution protocol, data
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Figure 4. The process of data sharing in AuthROS. The whole process is worked from top to bottom, and each dotted box is a phase.

encryption scheme, etc. Due to the possibility of data being
intercepted and altered during transmission, there are some
stricter standards for data integrity and security in AuthROS.
Consequently, AuthROS developed an interaction strategy
based on data digests that uses the SM2 digital signature
algorithm and the SM3 hash algorithm. In this strategy, the
server locally maintains all of the data while the blockchain
network uploads the data digest. The notations used in the
design are summarized in Table [I|

The design of AuthROS consists of three phases: (1) Initial-
ization, (2) Data Transfer, and (3) Data Query. Fig. E| depicts
the subprocess corresponding to each level.

E. Key Generation.

Throughout the whole data sharing life cycle, we must
verify its validity, integrity, and non-repudiation. We thus
generate a pair of asymmetric keys for each user and sign
their shared data. To satisfy the aforementioned conditions,
AuthROS implements the production and verification of the
elliptic curve public key by referencing the key pair generation
and public key verification criteria introduced by the SM2
algorithm [31]].

Assuming that the private key is d%,, and AuthROS com-
putes the public key P% = [d-G] using the multiple points
fast algorithm of multiple elliptic curves [30]], where G is
the base point of the elliptic curve and its order is a prime
number. In the meantime, AuthROS also employ the SM2 key
derivation function to build the appropriate public/private key
pair (Pg, dfg) for key exchanges. Specific algorithms can be
found in the standard for SM2 algorithms [31].

F. Key Allocation.

Data is often transferred in plaintext across the transmis-
sion connection in the current TCP/IP network transmission

framework, making it available for malevolent users of a third
party to intercept the data and conduct a series of assaults such
as replay attacks and man-in-the-middle attacks. To maintain
the security of data during transmission and storage on the
blockchain, it is necessary to encrypt and authenticate the data
using cryptographic technology. AuthROS implements the key
distribution function to ensure secure storage of blockchain
with SM4 and SM2. Among them, the SM4 key encrypts
plaintext data and the SM2 public key confirms the digital
signature.

Firstly, the user enters their own SM4 key K}, and SM2
public key P.. Then, the user selects a system public key P{ €
ks to encrypt the message SM2E : {(K¢,PL),Pi} —
CT, where dy and P¢ € k, form a public/private key
pair (P%,d%), ks is a set of SM2 public keys regularly
published by us. In addition, user should use their per-
sonal SM2 private key di, to sign the resulting ciphertext
CT,SM2S : {CT,di} — (r,s). Then, adding an infor-
mation frame after the ciphertext CT" to produce the final
message {CT, (r,s), Pi, Command }, where Command
denotes the instructions of operations will be processed. The
message is sent to the C'R via the TCP/IP protocol stack.
CR will decode the ciphertext with the SM2 private key d
corresponding to Pé, SM2D : {CT,d%s} — (K¢, Pc') after
receiving the data packet. After decryption, CR will utilize
P/, to validate the ciphertext’s authenticity and integrity using
CT, SM2V : {C’T7 Pt (r,s)} — True / False. After the
integrity and accuracy checks, the keys K¢ and P} will be
stored in the blockchain for next operations.

1) Registration.: At this procedure, user AU; registers
with AuthROS and uploads a key-value pair (IV;,¢;) as the
identity. Then, the N; supplied by the user and ¢;, the SM4
key K¢ uploaded by the user during the key allocation, the



TABLE I
SUMMARY OF NOTATIONS IN THIS PAPER.

EU; (d,o,v, Addr;)
N/d
(P§,ds)

Ko

(P&, de)

(rs)

SM2E : {ND,Ps} — CT

SM2D : {CT,Ps} - ND
SM4:{ND,Kc} — CT

SM2S : {Mradw,ds} — (r,s)

Notation Meaning
AU; The 24}, user of AuthROS
Type Data type of ROS topic transmission
LVy,y,- Three axis velocity of data of odometry
24,2 Triaxial angular velocity of odometry
Pose Pose information contained in data of odometry
Cov Covariance information contained in data of odometry
Ts Timestamp information contained in odometry

T Time of ROS data captured
Cloud server of AuthROS deploying Ethereum

Address of the identity of the i, user

Structure for users to store shared data, their own
keys, and keys of other users

Corresponding identity of the ¢:5, user
Username/password pair

A set of SM2 public keys published regularly

The SM2 public/private key pairs published
regularly in the system

User’s SM4 key

Public/private key pair for signing and verifying
SM2 signature value

The process of generating ciphertext C'T" by encrypting
plaintext data N.D with SM2 public key P&

The process of decrypting CT using d% to get N.D
The process of generating data ciphertext C'T" by
encrypting plaintext data N D with SM4 key K¢
The data to be sent is signed with SM2 algorithm

CR

ND Plaintext data

CcT Ciphertext of plaintext
Addr;

d,o,v

SM2 public key P}, and an unused account address Addr;
on the Ethereum network are used to generate a mapping
N; — (ti, Kk, PL, Addr;), In the preceding phase of key
allocation, the user-uploaded SM4 key K/ will now be
assigned to 0,0 = K},v and v will remain empty, which
means (v = Null) A (d = Null). The user’s identification in
the blockchain EU; (d, o, v, Addr;) will be created.

1.RS: Register Subscriber(‘/robot/odom’)
2.Spa: Set Params(‘/log’, Params)
O DT 3.RP: Register Publisher(‘/robot/odom’)
RT 4.SP: Set Publisher(‘/robot/odom’, Node2)
5.RT: Request Transport(‘/robot/odom’, Request)
6.DT: Data Transport(‘/robot/odom’, Data)
7.DG: Data Get(‘/robot/odom’)

(6)

Master

Figure 5. The workflow of ROS in local robots. Firstly, nodel, node2, and
AuthROS node should register their identity (subscriber or publisher) through
ROS Master and set the topic ‘/robot/odom’ for message transmission. Then,
the AuthROS node can seize data at any given time when the communication
between nodel and node2 is going on. Then, extracted messages will go
through a range of format conversion and encryption.

G. Topic Set.

The core of AuthROS is a monitoring node. AuthROS is
capable of monitoring the topics they want by inputting the
names and message types of topics by users. Corresponding
processing operations will be made for different message
types. For example, for odometry-type messages, the AuthROS
parses the respective messages after obtaining them from
a topic named ’1/robot/odom’, and extracts useful informa-
tion like three-axis velocity and angular velocity at a given
time, etc. Fig. [5] shows how AuthROS obtain and parse the
odometry-type messages.

1) Encryption and Transfer.: We use the SM4 encryption
method [32] to encrypt the ND to get the ciphertext C'T.
CT is packaged with some necessary information frames
and sent to C'R. The odometry-type data in ROS consists
of information such as LV, ,, AV, , .. Before transmission,
the data must be packaged into {LV, , ,, AV, ., Pose, TS,
Cov, Type }np, and encrypted with SM4 for the first time
SM4 : {NDy, K.} — CT;. The user signs the CTy with the
SM2 private key di to generate the signature value SM2S :
{CTy,ds} — (r,s), encapsulates the information frame
{CTy, Type ,t;, T, Command,(r,s)}yp, for the received
ciphertext C'Ty, re-encrypts the N Do, SM4 : {NDs, K¢} —
C'T5, encapsulates the information frame {CT5, N;} p, for
the C'T5, and transmits it to the C'R. After the identity check
is successful, AuthROS will decrypt C'T5 to C'T; and follow



up the ciphertext C7T; with the data digest interaction scheme
according to Command. However, for non-general data types,
such as image data, matrix and compression are necessary as
pre-processing steps.

V. IMPLEMENTATION AND EVALUATION

This section introduces the hardware platform and smart
contracts in experiments and then analyzes AuthROS of
response time from different perspectives: Consensus Algo-
rithms, Message Size, and Efficiency of the SM algorithm
family. We evaluate the response time of data upload based
on 4 ROS-Melodic robots with a ROS Master and a private
Ethereum network on the host. For the same configuration of
robots, we only evaluate the performance of a single robot.

A. Hardware Platform Equipment

The robots we used to equip with a Jetson Nano BO1 (Quad-
core ARM AS57 64-bit @1.43Ghz 4GB LPDDR4-3200), a
controller which has a built-in 9-axis IMU sensor, RPLIDAR
Al radar, and a Wi-Fi module that can provide up to 867mbps
communication bandwidth and an RGB-D binocular camera.
To realize the autonomous movement of the robot in the
closed experimental environment, Visual Slam (Visual Simul-
taneous Localization and Mapping) and Lidar Slam (Lidar
Simultaneous Localization and Mapping) are combined to
build a complete map of the closed experimental space. ROS
Melodic is set up in every robot, as long as the personal
computer running ROS Master. Through the Wi-Fi module,
each robot can connect to the ROS Master to achieve stable
communication. The PC running ROS Master also connects
to the server hosting the Ethereum network, thus can provide
interaction between robots and Ethereum.

The controller and Jetson Nano are connected through a
UART connection using software function calls provided by
the controller’s onboard C++ SDK. The controller collects the
9-axis IMU sensor and motor data. The RGB-D and RPLIDAR
are connected to the Jetnano to capture images and collect lidar
data. Motion commands are communicated between the Jetson
Nano and controller to realize motion planning and control.
The cloud server hosting Ethereum Network with a CPU (Intel
Xeon (Ice Lake) Platinum 8369B @3.5GHz), memory (16GB
DDR4 3200MHz), and disk (80GB ESSD).

B. Ethereum Smart Contract Implementation

The smart contracts developed in experiments are written in
Solidity v7.6. The contracts allowed for identity registration,
knowledge-upload, authority-grant, etc. All functions are listed
as follows:

Register(bytes). This function registers an identity in the
Ethereum network inputting a parameter of Bytes-type. The
SM4 key is used for data encryption as a token. The robot
owner converted the SM4 key to Bytes-type.

Data Upload(bytes, bytes, bytes). The robot owner uploads
confidential data to the Ethereum network for immutable
persistent storage by calling this method. This function accepts
three parameters of Bytes-type, the first parameter is the data

ciphertext of Bytes-type to be uploaded. The second parameter
is a Bytes-type token (SM4 key) that indicates the identity of
the data uploader. The third parameter is the timestamp of
Bytes-type when this method was called.

Authority Grant(address). The robot that calls this method
will append the token (SM4 key) that indicates its identity
to the token list in the specified EOA account so that the
specified account will have access to the function caller’s data.
This function accepts a parameter of address-type, which is the
address of the EOA that will be given access to the function
caller’s data.

Data Query(bytes, address). The user can call this function
to query the data being shared by the target EOA, when
the user’s token exists in the target EOA’s token list. The
first parameter “bytes” is a Bytes-type token that indicates
the identity of the function caller, and the second parameter
“address” indicates the target EOA address for the query
operation.

C. Evaluation Process

We take secure image sharing as an example in the Au-
thROS experiment. In the process of crime scene investiga-
tion and evidence collection, the images taken by different
robots at the crime scene have strict requirements on security
performance. User authorization is required for archiving and
retrieval. We will carry out experiments against this, and the
process of which is depicted in Fig. [6]

Firstly, we start the robot and load the ROS master on
the PC. After the initialization is complete, the robot will
automatically connect to the ROS master according to the
genesis block. We get the facial data we need from the topic
’frobot/CompressedImage’ in the form of a picture of 58 KB,
and then use the OpenCV toolkit to matrix it. Next, the matrix
will be converted into a character string and encrypted by SM4
algorithms. The ciphertext will be signed with the user’s SM2
public key and transmitted to the cache loaded in the server of
AuthROS. At the same time, the SM3 cipher hash algorithm
is used to generate the abstract of ciphertext, and the smart
contract sends a transaction with the abstract to the Ethereum
network with the help of the interface Data_Upload.

Finally, the authorized robot owner can invoke the interface
Data_Check to check the ciphertext. The idea of homomorphic
encryption is used for reference to design the process of data
checking. The ciphertext within the cache is hashed by SM3,
and the generated hash value is compared with the one queried
from Ethereum. To ensure the immutability of data, if the
two abstracts are the same, the Redis, an in-memory storage
structure, will return ciphertext to the user, otherwise, return
an error. At the same time, once a robot is authorized, it means
that its owner has obtained the SM4 key of the data sharer.
After the ciphertext is queried, the corresponding SM4 key
can be used to decrypt the ciphertext, and the OpenCV can
also be used to restore the image. The whole process can be
seen in the video.
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Figure 7. Left: total response time and success rate of PoW. Right: total
response time and success rate of PoA.

D. Performance Evaluation

Consensus Algorithms. As Fig. [7] shows, we set 300, 500,
and 700 analog processes to send Data_upload requests to
the Ethereum network based on PoW and PoA consensus.
We quantify the total response time and success rate of
transactions under three different concurrencies. The networks
share the same block difficulty, gaslimit, and message size,
which are Ox4cccc8, Oxftfftfff, and 1 KB respectively.

AuthROS maintains excellent interaction whichever consen-
sus algorithm is used. In Fig.[7} the success rate of transactions,
which exceeds 99% for both consensus algorithms, is compa-
rable. However, in terms of response time, PoA consensus
has obvious advantages over PoW consensus. This difference
follows that PoA verifies transactions through preset nodes’
voting. At the same time, PoW relies on the mining process
to verify transactions. This process needs to consume many
computing resources. We then conclude that PoA is more
suitable for data transmission in robots.

Messages Size. When robots interact with the contract, the
size passed to the contract method would have an impact on
the response time. Therefore, we conduct related experiments
to study the effect of message size on blockchain networks
based on two different consensus algorithms. Message size

PoA-based network
m Average Time Consumption (s)

0.150s

PoW-based network
M Average Time Consumption (s)

0.150s 0.149

0.120s

0.100s 0.090

0.090s

0.061

0.054 0.060s

0.050s
0.030s

0.000s 0.000s

1KB 2KB 4KB 8KB

1KB

2KB 4KB  8KB

Figure 8. Left: average time consumption for different sizes of messages
in seconds for a PoW-based network. Right: average time consumption for
different sizes of messages in seconds for a PoA-based network.

is set to 4 values of 1KB, 2KB, 4KB, and 8KB. We call the
Data_upload interface 300 times through the simulated process
and record the average time in Fig. [§]

As Fig. [ depicted, whether the Ethereum network is based
on PoW or PoA consensus, the response time grows as
message size increases. However, the PoA-based Ethereum
network has a shorter overall average response time than the
PoW-based Ethereum network. Furthermore, as message size
rises, the average response time of the PoA-based Ethereum
network grows more slowly.

Efficiency and Stability of SM Algorithm Family. In
terms of data communication, AuthROS is equipped with key
exchange based on SM2 to ensure the security of the SM4
key. Meanwhile, SM3 is used to generate the hash value of
data in a big size. Thus, the efficiency and stability of SM
algorithms have a huge impact on the availability and speed
of AuthROS.

We conduct experiments on the encryption and decryption
speed and stability of SM4 and SM3. We use plain-text
data with sizes of 1KB, 2KB, 4KB, and 8KB as encrypted
source data for SM4 encrypting and decrypting the data 300
times in Fig. |9 respectively, and recording the average time
consumption. We also evaluate the speed and stability of SM3
using an 800 KB matrix as encrypted source data for digest
generation 300 times in Fig.
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The encryption and decryption speeds of SM4 are close,
and it is clear that the time consumption of decryption and
encryption grows with the data sizes increase, which is due to
the features of the symmetric encryption algorithm. However,
it can be found in Fig. |E| that no matter the size of data, both
decryption and encryption of SM4 have good stability where
encryption time consumption concentrates in a certain range.
It is the same with SM3. In Fig[I0] it is clear that the stability
of the SM3 algorithm varies between 6.19ms and 6.34ms.

VI. CONCLUSION

This paper proposes AuthROS, a novel data sharing frame-
work for ROS, leveraging the Ethereum blockchain and SM
algorithms. AuthROS is equipped with a key exchange mecha-
nism and an authority granting mechanism. The key exchange
mechanism guarantees the security of the SM4 key used for
data encryption, and the authority granting mechanism ensures
the trustworthiness of shared data and the controllability of
information data. Through systematic experimental evaluation,
the security and efficiency of AuthROS are verified. This work
is also potential in some other fields as federated learning [34]],
[35]], [38], cloud-edge cooperate robotics [36]], [37[],smart city,
etc.
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