
Mobile Security and Privacy 155 © 2017 Elsevier Inc. All rights reserved.
http://dx.doi.org/10.1016/B978-0-12-804629-6.00007-9

C H A P T E R

7
On Discovering Vulnerabilities  

in Android Applications
X. Li*, L. Yu†, X.P. Luo†

*Chinese Academy of Sciences, Beijing, China †The Hong Kong Polytechnic University, 
Kowloon, Hong Kong

1 INTRODUCTION

The prosperity of the app economy boosts the number of mobile apps. More than two 
 million Android apps1 have been published in Google Play and around 2.5 million iOS apps2 
are listed in the Apple store. It is expected that the app economy could reach $101 billion in 
2020.3 At the same time, smartphones have become an indispensable part of our daily lives, 
and many apps have been downloaded and installed. A recent report shows that Android 
users will install on average 95 apps from June 2014 to January 2015 (Sawers, 2015).

Not all apps are well designed and developed. Recent studies illustrate that many apps are 
prone to various attacks because of their internal vulnerabilities. For example, HP research 
found that 90% apps are vulnerable after analyzing 2107 apps from companies on the Forbes 
Global 2000 (Seltzer, 2013). The latest application security report from Arxan shows that 90% 
of 126 mobile health and finance apps under investigation contain at least two critical security 
vulnerabilities (Arxan, Inc., 2016). Our study of 557 randomly collected apps with at least 
one million installations reveals that 375 apps (67.3%) had at least one vulnerability (Qian 
et al., 2015). There are many potential reasons for this embarrassing situation, such as short 
development cycles, lack of security awareness, insufficient security development guidelines.

In this chapter, we survey the vulnerabilities found in Android apps by collecting vulner-
ability reports from many sources, such as common vulnerabilities and exposures (CVE), 
because Android has occupied more than 80% of global market. Besides introducing major 
vulnerabilities in Android apps, we model how to discover them as graph traversals so that 

1 http://www.statista.com/statistics/266210/number-of-available-applications-in-the-google-play-store/
2 http://www.pocketgamer.biz/metrics/app-store/
3 http://venturebeat.com/2016/02/10/the-app-economy-could-double-to-101b-by-2020-research-firm-says/
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VulHunter (described in Section 2.3) can use them to check whether an app has such vulner-
abilities. Note that VulHunter uses Android property graphs (APGs) to represent apps and 
store them in the graph database. We also review the approaches for discovering various 
vulnerabilities in apps, which could leverage static analysis or dynamic analysis or the hybrid 
approach. Moreover, we discuss the limitations of existing approaches and suggest future 
directions of research (Heelan, 2011).

The chapter is organized as follows: Section 2 gives an introduction to the taxonomy of vul-
nerabilities in Android apps and the architecture of VulHunter. We introduce and model vari-
ous common vulnerabilities in Section 3. Section 4 reviews existing approaches for discovering 
vulnerable apps and Section 5 discusses their limitations. We conclude the paper in Section 6.

2 BACKGROUND

2.1 Security Mechanisms of Android

We introduce three security mechanisms that are closely related to major vulnerabilities in 
apps: process sandbox, permission mechanism, and signature mechanism. There are other im-
portant security mechanisms in Android, such as interprocess secure communication mecha-
nism, memory management mechanism, system partitions, and loading mechanism. Interested 
readers can refer to the relevant papers (Enck et al., 2009; Drake et al., 2014) for details.

Process sandbox. Android’s process sandbox mechanism achieves a separation between 
apps. It creates a Dalvik virtual machine (DVM) instance for each app and grants a UID as the 
identification in the app installing process. In the Linux kernel, UID acts as the identification 
for different users. By default, different apps are separated. If they need to visit each other 
directly, they can set their SharedUserID to the same value.

Permission mechanism. Android’s permission mechanism defines whether the app has 
the ability to access protected APIs and resources. The main functionalities of the permission 
mechanism include: permission confirmation during installation, permission check, permis-
sion use, and permission management during execution. A permission statement includes the 
permission name, the group it belongs to, and the protection level, which includes normal, 
dangerous, signature, signature or system. Developers can declare permissions required by 
the app through <uses-permission> tag in AndroidManifest.xml.

Signature mechanism. All apps must be signed with a private key before being released. 
The signature can be used to confirm the identity of developers, to test whether an app has any 
changes, and to establish a trusted relationship between two apps. Signature methods are divided 
into debug mode and release mode. The signature in debug mode is used for program testing 
during development, and the signature in release mode is used for publishing apps to markets.

2.2 Taxonomy of Android App Vulnerability

We have made a collection of 242 Android vulnerabilities, which have detailed information 
from many sources such as, vulnerability databases, security communities, and so on. After 
analyzing these vulnerabilities according to CERT Secure Coding Standards (CERT, 2015) 
and the OWASP’s Mobile Security Project (OWASP, 2015), we classify the 242 vulnerabilities 
into 20 categories, as shown in Fig.  1, and number them M1-M20 (M20 can be  negligible, 
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 because its number is very small). It is worth noting that M1-M8 are based on OWASP Mobile 
Risk Top10. Fig. 2 depicts the distribution of these vulnerabilities. It shows that most of the 
reported vulnerabilities result from poor authorization and authentication as well as unin-
tended data leakage.

2.3 VulHunter

We proposed and developed Vulhunter to discover common vulnerabilities in Android 
apps (Qian et al., 2015). Given an app, Vulhunter will turn its dex file into an APG which 
integrates the abstract syntax tree (AST), interprocedure control-flow graph (ICFG), method 
call graph (MCG), and system dependency graph (SDG) of the app, and is stored in a graph 

Name NameVulnerability Name Vulnerability Name
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FIG. 1 Taxonomy of Android vulnerability.
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database. Moreover, we model five common vulnerabilities as graph traversals and perform 
them over APGs to determine whether an app is vulnerable. We have demonstrated in Qian 
et al. (2015) how to discover syntax level, control flow level, and data flow level vulnerabil-
ities. In this chapter, we will cover more vulnerabilities and model how to identify them as 
graph traversals following (Qian et al., 2015). For ease of explanation, we will use the follow-
ing symbols in this chapter: 

(1)

(2)

(3)

where, 

• MATCHlabel
p  represents matching nodes with label label and properties p.

• ARG(N)i indicates traversing from Invoke-Stmt node N to get its ith argument.
• N R Ntype

p len1 2- ®[ ]  denotes a path from node N1 to node N2. The path is connected by 
relationship type with length of len, which can be omitted if it equals 1.

3 MODELING COMMON VULNERABILITIES

3.1 Insecure Data Storage

Sensitive information disclosure on external storage. If an app calls openFileOutput() but 
the second parameter is not set to Context.MODE_PRIVATE, this vulnerability may happen 
depending on whether the file is encrypted. To locate the suspicious code, we can conduct the 
following graph traversals: 

(4)

where p2 refers to openFileOutput and p3 indicates the constant parameter node 
MODE_WORLD_READABLE or MODE_WORLD_WRITEABLE. This graph traversal first locates 
the statement which invokes openFileOutput and then checks its second parameter. If the 
parameter in the AST tree is p3, the app may have such vulnerability.

3.2 Insufficient Transport Layer Protection

SSL/TLS trusts all certificates. When using SSL, if the app invokes setHostnameVerifier() 
with the parameter ALLOW_ALL_HOSTNAME_VERIFIER, this vulnerability exists, which 
could make the app vulnerable to the MITM (man-in-the-middle) attack. To detect the prob-
lematic code, we can use the following graph traversals: 

(5)

where p1 represents setHostnameVerifier and p2 denotes ALLOW_ALL_HOSTNAME_
VERIFIER. This graph traversal first matches the statements which invoke method p1, and 
then checks whether its first parameter in the AST tree matches p2. If so, the vulnerability exists.

MATCHlabel
p ;

ARG N i( ) ;

N R Ntype
p len1 2- ®[ ] ,

MATCH ARG N MATCHast
p

stmt
p3

2
2� �( ) ,

MATCH ARG N MATCHast
p

stmt
p2

1
1� �( )
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3.3 Unintended Data Leakage

Log sensitive information disclosure. If an app uses one of the following methods to save 
sensitive information: Log.d(), Log.e(), Log.i(), Log.v(), Log.w(), such a vulnerability may ex-
ist, because when the terminal is connected to the PC, Log information can be accessed. To 
detect such a vulnerability, we can use the following graph traversal: 

(6)

where p1 denotes sink functions, such as Log.i(), Log.d(), and p2 refers to source functions 
that collect sensitive information, such as getDeviceID(). If there exists a path from source 
functions to sink functions, the vulnerability may exist. The edges on this path have a data 
dependency relationship.

3.4 Poor Authorization and Authentication

Exposed components (e.g., contentProvider, service). In the <provider> or <ac-
tivity> tag of AndroidManifest.xml, if there is not the android:exported="false" statement 
for apps that set either android:minSdkVersion or android:targetSdkVersion to a 
value less than 17 or if the value of the statement is true, such a vulnerability may exist.

Intent leakage or tampering caused by permission granting. If there is an implicit in-
tent broadcasting method call and there is a permission statement with a property value of 
FLAG_GRANT_WRITE_URI_PERMISSION or FLAG_GRANT_READ_URI_PERMISSION, 
then such a vulnerability may exist. To locate the suspicious code, we can use the following 
graph traversal: 

(7)

(8)

where p1 refers to Context.sendBroadcast(), p2 denotes intent.addFlags(), and p3 indicates 
FLAG_GRANT_WRITE_URI_PERMISSION. After finding the statements that call Context.
sendBroadcast(), we check the intent initialization function intent.addFlags(). If any of them 
uses FLAG_GRANT_WRITE_URI_PERMISSION as a parameter, this vulnerability may exist.

3.5 Broken Cryptography

Weak AES encryption mode. AES encryption is initialized using javax.crypto.Cipher. If 
an app uses the ECB mode, the same plaintext will lead to the same ciphertext, which is 
vulnerable to dictionary attacks. We could use the following graph traversal to identify the 
corresponding problematic code: 

(9)

(10)

where p1 refers to Ciper.getInstance and p2 denotes AES/ECB/PKCS5Padding. We first iden-
tify the statements that call Ciper.getInstance, and then check whether their first parameter is 
AES/ECB/PKCS5Padding. If so, the vulnerability may exist.
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3.6 Webview Vulnerability

WebView malicious code execution. Such vulnerability exists in the system with API level 
less than 17. If the method webView.addJavascriptInterface() is called, and the applicable 
versions of the app in AndroidManifest.xml are not limited to API level 17 or above, the vul-
nerability may exist. We can use the following graph traversal to identify the vulnerable code: 

(11)

where p1 denotes webView.addJavascriptInterface. After finding a statement that invokes this 
method, we check whether the minSdkVersion in manifest file is less than 17. If so, the vul-
nerability may exist.

3.7 App Communication Vulnerability

Content disclosure of implicit Intent broadcast. Intent is used for exchanging information 
between components in the same app or between apps. Note that using implicit Intent broad-
cast may lead to the disclosure of Intent contents. More precisely, if there is an invocation of 
the implicit Intent broadcasting method Context.sendBroadcast(), it will cause this problem. 
Therefore we can easily identify this issue using the following graph traversal: 

(12)

where p1 denotes Context.sendBroadcast().

3.8 Configuration Error Vulnerability

Information disclosure due to the incorrect setting. Before releasing an app, the devel-
oper should ensure that the app is not debuggable in AndroidManifest.xml (android:debug-
gable="false"). Otherwise, such a vulnerability may exist.

4 DISCOVERING VULNERABILITIES

In this section, we review mechanisms for discovering vulnerabilities. They can be classi-
fied into three categories: static analysis-based methods, dynamic analysis-based methods, 
and hybrid methods. The static analysis-based methods usually investigate the Dalvik byte-
code in the dex file or the Java class files converted from the dex file without running the app. 
The dynamic analysis-based methods commonly execute the app and monitor its behaviors, 
based on which vulnerabilities could be identified. Since both static analysis and dynamic 
analysis have their pros and cons, researchers propose hybrid methods that leverage the ad-
vantages of static and dynamic analysis.

4.1 Static Analysis-Based Approaches

Grace et al. studied the vulnerability of capability leaks, which belongs to M5 in Fig. 1, 
and developed a static analysis-based detection tool named Woodpecker, which could 

MATCHstmt
p

MATCHstmt
p
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 discover both explicit and implicit capability leaks (Grace et al., 2012). Woodpecker builds 
CFGs of apps and then leverages the CFGs to determine whether there is privilege leakage. 
Specifically, for the explicit capability leakage, it inspects the preinstalled apps in the system 
by checking whether their components are exposed. If so, it conducts further path analysis to 
determine whether the leakage exists. For the implicit capability leakage, it checks each app’s 
sharedUserId in Manifest. If it is used, this app’s capability in terms of requested permissions 
is exposed to the apps with the shared UID.

Wei et al. proposed and developed Amandroid (Wei et al., 2014), a static analysis frame-
work, for detecting intercomponent communication vulnerabilities, which include those in 
M4 and M17 in Fig. 1. More precisely, given an app, it first turns the Dalvik bytecode into 
intermediate representation (IR) and then constructs the IDFGs (intercomponent data flow 
graph) and DDGs (data dependence graph). After that, Amandroid looks for potential vul-
nerabilities from IDFGs and DDGs, including data leakage, data injection, and APIs misuse. 
Note that when building IDFGs, Amandroid computes the point-to information for all objects 
and fields in order to find the target of intent precisely.

Lu et al. developed CHEX (Lu et al., 2012) to identify component hijacking vulnerabilities, 
which cover those in M4, M5, and M7 in Fig. 1, such as permission disclosure, unauthorized 
data acquisition, intent deception, etc. CHEX employs data flow summaries to model the ex-
ecution of entry points, and utilizes data flow analysis based on data dependency graphs to 
locate hijacking vulnerability. They further enhanced CHEX by proposing AAPL (Lu et al., 
2015) to detect privacy leakage vulnerabilities. AAPL can reduce false positives. It combines 
a variety of static analysis methods, including opportunistic constant evaluation, object or-
igin inference, and joint flow tracking, to detect more invisible data flows. Furthermore, 
AAPL employs a new approach called peer voting to filter out most of the legitimate pri-
vacy disclosures from the results, purifying the detection results for automatic and easy 
interpretation.

Gordon et al. proposed DroidSafe (Gordon et al., 2015) for statically detecting the apps’ 
data stream related vulnerabilities, which include those in M4 in Fig. 1. DroidSafe creates 
models for 117 classes in the Java standard library as well as the Android library, Android 
runtime, and apps hidden state maintained by the Android runtime. It makes global resolu-
tion of Intent and Uri, and traces IntentFilter. By analyzing the sensitive data flows in apps, 
DroidSafe establishes the data flow graphs from sources to sinks. DroidSafe has covered all 
possible forms of communication to ensure a high coverage. Experimental results show that 
compared to other methods, DroidSafe increases the detection rate of sensitive data flow by 
about 10%.

Cao et  al. designed and realized EDGEMINER (Cao et  al., 2015) to address the is-
sue of implicit control flow transitions through the Android framework. It analyzes the 
Android framework and constructs the call graphs to find potential callbacks. By us-
ing backward data flow analysis to identify registration-callback pairs, EDGEMINER 
outputs framework summary and then employs other static analysis tools for further 
analysis of apps.

Fahl et al. developed MalloDroid (Fahl et al., 2012) for studying the MITM vulnerability in 
Android apps. This tool can be integrated into the app market or installed in the user’s mobile 
device. MalloDroid will inspect apps during installation. If it identifies potential SSL MITM 
vulnerability in an app, users will be alerted.
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4.2 Dynamic Analysis-Based Approaches

Xing et al. discovered the severe vulnerability relevant to Android’s upgrading mecha-
nism. In particular, malware that lurks in the lower version system could get privilege rights 
after the system upgrades, then get access to users’ data privacy. To spot such a vulnerabil-
ity, the authors have developed the detection tool named SecUP. It constructs a database for 
saving exploit entry points and has a scanner for vulnerability identification. The detection 
module has constraint rules for determining the existence of vulnerabilities.

Wang et  al. investigated the mobile-end same-origin policy (SOP) bypass vulnerabil-
ity (Wang et al., 2013), and proposed a detection mechanism named Marbs. This system 
marks the source of information for each communication message and strengthen the SOP 
strength. The core of Marbs includes setOriginPolicy and checkOriginPolicy, which are im-
planted into DVM thread. SetOriginPolicy is open to all apps, and checkOriginPolicy is for 
the system kernel.

Wu et al. investigated the security impact of vendor customization on the Android system 
(Wu et al., 2013) and designed a system named SEFA to detect potential vulnerabilities. SEFA 
consists of three parts: including provenance analysis, permission usage analysis, and vulner-
ability analysis. First, it conducts provenance analysis, classifying the system apps into three 
categories, namely AOSP native applications, vendor-specific apps, and third-party apps. 
Then it performs the authorization analysis on the apps in order to check whether sensitive 
permissions are used. Finally, it checks whether there are redelegation vulnerabilities and 
privacy disclosure vulnerabilities.

Schrittwieser et  al. studies the vulnerabilities in mobile messaging and VoIP apps 
(Schrittwieser et al., 2012). By conducting dynamic testing, it found vulnerabilities in VoIP 
and message apps’ authentication mechanisms. The vulnerable apps make the user’s phone 
number as the only certification basis, triggering a series of safety risks, such as account hi-
jacking, spoof sender-IDs, and enumerating subscribers.

Hay et al. examined the IAC (Inter-Application Communication) vulnerability (Hay et al., 
2015) and developed a new system named INTENT-DROID. It triggers sensitive APIs by 
constructing and sending probe intents. The externally observable indications are used to 
validate the test. The experimental result shows that INTENT-DROID can find a lot of IAC 
vulnerabilities in apps.

4.3 Hybrid Approaches

Sounthiraraj et al. investigated the SSL MITM vulnerability (Sounthiraraj et al., 2014). It 
first conducts static analysis to identify apps that may have such a vulnerability by examining 
the implementation of X509TrustManager and HostNameVerifier. More precisely, it identi-
fies key entry points and builds the input function set for the next phase of dynamic trigger 
detection. Then, it applies UI automation to the key entry points of windows for triggering 
HTTPS communications, whose traffic will go through the MITM proxy. At the same time, 
the log of dynamic analysis will be recorded and used to determine whether the SSL MITM 
vulnerability exists.

Bhoraskar et al. developed Brahamstra (Bhoraskar et al., 2014) for detecting third-party 
component vulnerabilities in apps. It addresses the weakness of existing GUI testing tools 
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and can efficiently locate the triggering points of third-party libraries. First, the Execution 
Planner constructs page transition graphs to find execution paths to third-party libraries 
through static analysis. Then, the Execution Engine triggers apps in the simulator following 
the executable paths. Finally, the Runtime Analyzer captures and records running apps’ oper-
ating status to determine whether there are third-party library vulnerabilities. To improve the 
speed of execution engine, Brahmastr rewrites app binaries to insert code that automatically 
invokes the callbacks triggered by the user.

Zhou et al. examined two types of vulnerabilities related to content providers, including 
passive content leakage and content pollution (Zhou and Jiang, 2013). They developed a de-
tection tool named ContentScope. It firstly filters out apps that do not have exported content 
providers. Then, ContentScope determines the vulnerable apps by traversing the path from 
public content provider interface to the low-level database-operating routines in control flow 
graph. It will conduct dynamic analysis to confirm the vulnerability in apps.

5 DISCUSSION

5.1 Limitations in Static Analysis-Based Methods

By analyzing the bytecode instead of executing the app, static analysis may quickly locate 
problematic codes and achieve high code coverage. However, it suffers from several limita-
tions. First, since it does not run the app, it is difficult to investigate codes using dynamic lan-
guage features. For example, Java reflection is widely used in many apps, but it is challenging 
to investigate it in a precise and scalable manner (Smaragdakis et al., 2014). Moreover, apps 
could use dynamic class loading to dynamically extend its functionality. Static analysis can-
not examine the dynamically loaded class if it is on the remote server. Besides using dynamic 
language features, more and more apps will employ the hardening services (or packing ser-
vices) to protect themselves (Zhang et al., 2015b). Note that the dex file in the packed app 
does not contain the app’s major functionalities, thus impeding static analysis.

Second, UI components can be dynamically added, and they will usually react to certain 
events, such as user input. Without executing the app, static analysis may miss such dynamic 
UI components and/or the reactions to certain events (Rountev and Yan, 2014; Shao et al., 
2014). Third, the callback mechanism provided and orchestrated by the Android framework 
introduces challenging issues to static analysis (Cao et al., 2015), such as how to trace the 
information flow through the Android framework, etc. Note that the majority of existing 
studies just focus on apps, and they will be affected by the issues introduced by the Android 
framework. Fourth, there are still many open problems in static program analysis, such as 
pointer analysis, implicit flow analysis, and concurrent program analysis, to name a few 
(Hind, 2001). Moreover, given more than two million apps, how to quickly spot vulnerable 
apps is non-trivial.

5.2 Limitations in Dynamic Analysis-Based Methods

Since dynamic analysis executes apps, it has a high accuracy rate and will not be affected 
by hardening services. However, it also has some limitations. First, the code coverage rate of 
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 dynamic analysis is low because it will take a very long time to execute all paths. Second, many 
existing dynamic analysis methods use emulator (e.g., QEMU) for analyzing apps. However, 
emulators may not support all features in a real smartphone, such as various sensors, USB, etc. 
Furthermore, a number of approaches for detecting emulator have been proposed (Jing et al., 
2014), which may render many existing approaches useless. Third, the majority of existing 
approaches do not handle implicit flows. Note that tracking implicit flows could reveal more 
security vulnerabilities. However, it is challenging to track implicit flows (King et al., 2008).

5.3 Future Directions

Based on the above analysis, we list a few future directions to stir up research efforts into 
this important area. First, since static analysis and dynamic analysis have their own advan-
tages and disadvantages, it is a promising approach to combine them together. For example, 
static analysis can quickly locate suspicious codes, guide the fuzzing test, generate GUI test 
cases, etc. Dynamic analysis can track the information flows, handle dynamic language fea-
tures, etc. Second, since more and more apps employ various obfuscation and hardening tech-
niques to protect themselves from being reverse engineered and analyzed, such techniques 
also make the detection of vulnerability more difficult. How to effectively and efficiently re-
cover the original dex file is an interesting research problem. Third, although we summarize 
a number of vulnerabilities, there is a lack of formal approaches to represent them. Moreover, 
methods for discovering new vulnerability patterns are desirable. Leveraging machine learn-
ing techniques and incorporating more information in addition to code (Zhang et al., 2015a) 
would be a promising approach.

6 SUMMARY

In this chapter, we survey the vulnerabilities found in Android apps by collecting vulner-
ability reports from many sources, such as CVE. Besides introducing major vulnerabilities in 
Android apps, we model how to discover them as graph traversals following the definition 
in VulHunter Qian et al. (2015). We also review the approaches for discovering various vul-
nerabilities in apps, which could leverage static analysis, dynamic analysis, or the hybrid 
approach. Moreover, we discuss some limitations in existing approaches and suggest future 
directions of research.
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