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Abstract— Being the largest blockchain with the capability
of running smart contracts, Ethereum has attracted wide atten-
tion and its market capitalization has reached 20 billion USD.
Ethereum not only supports its cryptocurrency named Ether but
also provides a decentralized platform to execute smart contracts
in the Ethereum virtual machine. Although Ether’s price is
approaching 200 USD and nearly 600K smart contracts have been
deployed to Ethereum, little is known about the characteristics of
its users, smart contracts, and the relationships among them. To
fill in the gap, in this paper, we conduct the first systematic study
on Ethereum by leveraging graph analysis to characterize three
major activities on Ethereum, namely money transfer, smart
contract creation, and smart contract invocation. We design a new
approach to collect all transaction data, construct three graphs
from the data to characterize major activities, and discover
new observations and insights from these graphs. Moreover, we
propose new approaches based on cross-graph analysis to address
two security issues in Ethereum. The evaluation through real
cases demonstrates the effectiveness of our new approaches.

I. INTRODUCTION

With around 20 billion USD market capitalization,
Ethereum is the largest blockchain that supports smart con-
tracts, which are autonomous computer programs that, once
started, execute automatically and mandatorily according to
the program logic defined beforehand [1]. Two years after
its debut in July 2015, there are already around 4M external
owned accounts, which are usually normal users or developers,
and 600K smart contracts in Ethereum. There are studies about
Ethereum’s security [2], [3] and performance [4]. However,
little is know about the characteristics of its users, smart
contracts and the relationships among them (i.e., user to user,
user to smart contract, smart contract to smart contract), which
can help us better understand the Ethereum ecosystem.

In this paper, we conduct the first systematic study on
Ethereum by leveraging graph analysis to characterize three
major activities on Ethereum, namely money transfer, smart
contract creation, and smart contract invocation. These ac-
tivities empower users to send money to others, developers
to deploy their smart contracts to Ethereum, and users or
applications to call the deployed smart contracts. We construct
the money flow graph (MFG), smart contract creation graph
(CCG), and smart contract invocation graph (CIG) to charac-
terize these activities, by collecting all transactions happened
on Ethereum and extracting useful data from them.

9 The corresponding author.

Transactions are signed data packages containing messages
with useful information. For example, the value field in a
transaction indicates the amount of money transferred. A
transaction can be an external one if it is sent from an external
owned account (EOA), which is usually produced by a wallet
application with data provided by the user (e.g., how much
money to transfer). Alternatively, a transaction can be an
internal one that results from executing a smart contract due to
an external transaction, and therefore an internal transaction’s
sender is the smart contract. Note that an external transaction
may lead to many internal transactions. It is non-trivial to col-
lect all transactions because although external transactions are
publicly available in the blockchain, internal transactions are
not stored in the blockchain. To obtain all internal transactions,
we design a new approach that replays all external transactions
in our customized Ethereum client that will record the internal
transactions (Section IV).

Based on all transaction data, we construct MFG, CCG,
CIG to represent money flow, smart contract creation, and
smart contract invocation, respectively (Section V). Then, we
conduct various graph analysis on MFG, CCG, and CIG, such
as measuring their degree distribution, clusters, degree correla-
tion, node importance, assortativity, strongly/weakly connected
component etc. (Section VI). Such investigation leads to new
observations and insights. For example, users prefer transfer-
ring money rather than calling smart contracts on Ethereum.
Moreover, smart contracts for financial applications dominate
the Ethereum ecosystem but most smart contracts are not
widely used. Besides examining individual graphs, we propose
new approaches based on cross-graph analysis to address two
security issues in Ethereum (Section VII), including attack
forensics for finding accounts controlled by the attacker, and
anomaly detection for discovering potential attacks through
smart contracts. The experimental result demonstrates the
effectiveness of our new approaches. Although some recent
works studied Bitcoin through graph analysis [5]-[8], their
methods and results cannot be directly applied to Ethereum
because of the differences between Ethereum and Bitcoin in
functionalities and protocols as discussed in Section VIII-A.

In summary, we make the following major contributions.

(1) To the best of our knowledge, it is the first systematic
investigation on Ethereum via graph analysis. We propose
a new approach to collect all transactions data, and then
construct money flow graph (MFG), smart contract creation
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graph (CCG), and smart contract invocation graph (CIG) to
characterize major activities on Ethereum.

(2) We obtain many new observations and insights about
Ethereum by conducting various graph analysis on MFG, CCG
and CIG. They help us obtain a better understanding of the
Ethereum ecosystem. To foster the research on this topic, we
will release the customized Ethereum client, collected data,
and processing scripts after paper publication.

(3) We propose new approaches based on cross-graph
analysis to handle two security issues in Ethereum, including
attack forensics and anomaly detection. The evaluation through
real cases shows the effectiveness of new approaches.

The rest of the paper is organized as follows. Section
II introduces the background knowledge of Ethereum. After
giving an overview of our analysis procedure in Section III,
we detail the data collection, graph construction and analysis
in Section IV, Section V and Section VI, respectively. Section
VII presents the new approaches based on cross-graph analysis
for handling two security issues. After reviewing related
studies in Section VIII, we conclude the paper in Section IX.

II. BACKGROUND

Ethereum is the largest blockchain platform that supports
smart contracts [9] and its cryptocurrency named Ether. Ether,
whose price is approaching 200 USD, can be traded on
cryptocurrency exchanges or used to pay for transaction fees
and computational services. Developers can create various
applications on Ethereum by constructing and deploying smart
contracts, which will be executed in the Ethereum virtual
machine (EVM). Normal users can transfer Ether to others and
use those applications by invoking smart contracts. Ethereum
requires users to pay transaction fees for protecting it from
frivolous or malicious tasks that will exhaust the resources.

The basic unit in Ethereum is the account [9]. There are two
kinds of accounts, namely external owned accounts and smart
contracts. The major difference between them is that smart
contracts contain executable code whereas external owned
accounts do not have it. Developers usually prepare smart
contracts in high-level languages (e.g., Solidity) and compile
them into EVM bytecode. To deploy a smart contract to
Ethereum, the creator sends a transaction, whose data field
contains the bytecode, to the recipient address. Note that a
smart contract can be created by either an external owned ac-
count or another smart contract. After successful deployment,
any user of Ethereum can invoke the smart contract by sending
a transaction whose recipient is the contract. The data field of
that transaction specifies the function in the smart contract to
be invoked as well as function’s parameters.

Each transaction contains several basic fields. The recipient
field gives the address of the transaction recipient. If the
transaction is used for contract creation, the recipient address
is zero. The signature field specifies the transaction sender. The
value field indicates the amount of money transferred from the
sender to the recipient. The data field contains the bytecode of
a smart contract or the information (e.g., parameters) to invoke
a smart contract. We focus on transactions because the three
major activities of Ethereum, including money transfer, smart
contract creation and smart contract invocation are triggered
by transactions. The execution of transactions may fail due
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Fig. 1. An overview of our approach.

to many reasons (e.g., invalid bytecode). Once a transaction
fails, the effect resulting from applying the transaction will
roll back. Hence, when investigating smart contract creation,
we only consider successful transactions.

III. METHODOLOGY

As shown in Fig.1, our methodology consists of three
phases, which are detailed in the following sections. The
first phase, data collection (Section IV), collects all trans-
action data for subsequent graph construction. Although the
blockchain and all external transactions are publicly available,
the internal transactions are not stored in the blockchain. We
propose a new approach to obtain internal transactions by
modifying the Ethereum client to add instrumentation code.
Then, both external and internal transactions are fed to the
second phase, graph construction (Section V), to construct
three graphs, namely money flow graph (MFG), smart contract
creation graph (CCG), and smart contract invocation graph
(CIG). These graphs characterize the activities of money
transfer, contract creation and contract invocation, respectively.
We also calculate the statistics of these graphs.

The last phase, graph analysis (Section VI), conducts graph
analysis on MFG, CCG, and CIG by computing metrics
including degree distribution, clustering, degree correlation,
node importance, assortativity and strongly/weakly connected
component. Based on the statistics and metrics of these graphs,
we discover new observations and insights. Besides inspecting
individual graphs, we propose new approaches based on cross-
graph analysis to handle security issues in Ethereum (Section
VII), including attack forensics and anomaly detection.

IV. DATA COLLECTION

We collect all transactions (28,502,131 external transac-
tions and 19,759,821 internal transactions) from the launch
of Ethereum on July 30th, 2015 to June 10th, 2017. Since
external transactions are initialized by EOAs and stored in the
blockchain, we collect them by running an Ethereum client to
synchronize all data. Note that each Ethereum client maintains
the same copy of blockchain with all historical transactions
according to its protocol [10].

However, internal transactions result from the execution of
smart contracts, and they are not stored in the blockchain.
We should not ignore internal transactions when conducting
graph analysis, because they enable smart contracts to interact
with other accounts, such as creating new contracts, invoking
other contracts. One possible approach for obtaining internal
transactions is to crawl them from some Ethereum explorer
websites (e.g., Etherscan, https://etherscan.io/) maintained by
Ethereum community. However, to keep the websites available
to all visitors, they usually restrict the amount of data that can
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be crawled. Besides, to the best of our knowledge, there are
no available tools for collecting internal transactions.

To address this issue, we propose collecting all internal
transactions by replaying external transactions in our cus-
tomized EVM. The rationale behind our solution is that
internal transactions are incurred by the execution of smart
contracts, which are triggered by external transactions. More
precisely, we modify go-ethereum V 1.6.0, a popular Ethereum
client implemented in the GO language by inserting the
instrumentation code into EVM, a stack-based virtual machine
for executing smart contracts.

Ethereum defines 130 operations for EVM [10], and the
bytecode of a smart contract can be considered as a sequence
of such operations. Ethereum runs smart contracts in EVM,
which is in charge of interpreting EVM operations. EVM
provides 61 handlers to interpret 61 operations, individually,
and 4 special handlers to execute PUSHz, 1 < x < 32,
DUPz, 1 <z <16, SWAPz, 1 < z < 16, and LOGz,
0 < z < 4, respectively. PUSHx pushes one item on stack,
x is the size of item in byte; DU Pz duplicates the x-th stack
item; SW APz exchanges the 1st and the (z + 1)-th stack
items; LOGz appends log record with x topics.

By inspecting EVM, we find that five operations can lead
to internal transactions, including CREATE, CALL, CALL-
CODE, DELEGATECALL and SELFDESTRUCT (an alias of
the original SUICIDE operation). CREATE and CALL create
and invoke a smart contract, respectively. CALLCODE and
DELEGATECALL also invoke a smart contract, but the callee
runs in caller’s context. By using them, a smart contract
can be loaded as a library by another one. SELFDESTRUCT
removes the smart contract from the blockchain and sends the
remaining money in the smart contract to a designated target.
Therefore, we modify the handlers of these five operations.

More precisely, in the handler of CREATE, we insert the
instrumentation code after the success of contract creation
to record the address of contract creator, address of the
created contract, the amount of Ether deposited in created
contract by contract creator. Similarly, in the handlers of
CALL, CALLCODE, DELEGATECALL, we log the addresses
of caller, callee and the amount of Ether transferred from
caller to callee. In the handler of SELFDESTRUCT, we record
the address of destructed contract, the address to receive the
remaining Ether, and the amount of Ether.

V. GRAPH CONSTRUCTION

Money transfer, contract creation and contract invocation are
three major activities happening on Ethereum. To investigate
them, we construct three graphs (i.e., MFG, CCG, CIG) based
on both external and internal transactions. In the preprocess
stage, we exclude four types of transactions that are not related
to the aforementioned activities. A transaction of the first type
sends Ether from an EOA to another but the amount is zero. A
transaction of the second type self-destructs a smart contracts
and the smart contract has no Ether remaining. Consequently,
such transaction does not result in money transfer. The third
type of transactions are unsuccessful transactions among EOAs
because they do not lead to money transfer. The fourth type
of transactions are unsuccessful transactions for smart contract
creation since they fail to create contracts. Note that we do not

TABLE I
NUMBER OF TRANSACTIONS INVOLVED IN MONEY FLOW (BG /),
CONTRACT CREATION (BG¢¢r), AND CONTRACT INVOCATION (BG¢p)
[ BGurF BGcoc BGcr
[ 27,535,903 | 599,934 | 9,125,860 |

0.4 — all 0.4 — all 0.4 — all
+ normal + normal + normal
0.008 meex SC g »or SC 2o SC

510 15 20 25 30 0% 1 2 3 4 5 10 15 20 25 30
transaction transaction transaction

(@) BGur () BGee (©) BGcr

Fig. 2. Cumulative distribution of the number of transactions

exclude the unsuccessful transactions for contract invocation,
because before rolling back the contract will be (partially)
executed. Moreover, the transactions for smart contract cre-
ation are not considered when building CIG, even if they will
execute the construction function of the created smart contract,
because according to Ethereum’s protocol [10] the code of the
construction function will be discarded after smart contract
creation and thus no users can invoke it again.

We collect account addresses by parsing the external trans-
actions (i.e., signature field and recipient field) and the logs of
internal transactions. After preprocessing, 2,721,080 accounts
(i.e., 2,121,146 s and 599,934 smart contracts) are obtained.

In the construction stage, we divide the remaining trans-
actions into three groups (i.e., BGyr, BGoe and BGey),
corresponding to money transfer, smart contract creation, and
smart contract invocation. Please note that a transaction may
be included in several groups if it triggers multiple activities.
For instance, a transaction for smart contract creation can
also deposit some Ether in the created smart contract and
therefore the transaction should be included in both BGy,r
and BGo¢. As another example, when a transaction calls a
smart contract, it can send Ether to the contract. In this case,
such transaction should be included in BG,;r and BG¢;.
Table I lists the number of transactions in three groups. We can
see that the size of BGoe (599,934) is equal to the number
of smart contracts, because a smart contract can only be
created once. Moreover, users transfer money more frequently
(27,535,903 vs. 9, 125, 860) than interacting with applications
through calling smart contracts on Ethereum.

Fig.2 illustrates the distribution of the number of transac-
tions related to the accounts in BG;r, BGc¢ and BG¢, indi-
vidually. The solid line, dotted line and dotted line with marks
denote all accounts, EOAs and smart contracts, respectively.
Each point (z, y) indicates that y of accounts are involved in no
more than x transactions. Fig.2(a) shows that 0.8% (the point
(0, 0.008)) of EOAs do not transfer Ether. In other words, if
one EOA is a user, then almost all users transfer (i.e., receive
or send) money on Ethereum. However, more than 2/3 smart
contracts (the point (0, 0.69)) do not transfer Ether. Moreover,
about 81% of accounts (96% of smart contracts and 77% of
EOAs) are involved in no more than 5 transactions. That is,
most accounts (especially smart contracts) are infrequent in
transferring money.

Fig.2(b) shows that 99% of EOAs (point (0, 0.99)) do
not create contracts. If an EOA that creates smart contracts
is a smart contract developer, the proportion of developers
is just 1% of total users. The point (1, 0.995) informs that
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TABLE II
STATISTICS OF GRAPHS

graph # edges # isolated EOA | # isolated sc
MFG | 5,267,627 16,845 412,293
CCG | 599,934 2,098,922 0

CIG | 1,281,500 1,554,301 483,404

99.5% of smart contracts are involved in only 1 transaction
(i.e., the transaction for contract creation). Hence, we can
learn that almost all contracts do not create contracts. One
possible reason is that Ethereum is such a young platform
that developers rarely exploit this advanced functionality.

Fig.2(c) demonstrates that 73% (point (0, 0.73)) of EOAs do
not invoke smart contracts and 81% (point (0, 0.81)) of smart
contracts are not invoked. Moreover, about 96% of EOAs call
smart contracts no more than 5 times (point (5, 0.96)). Hence,
we can learn that not all users use smart contracts frequently.
Since 69% of smart contracts do not transfer money, we
investigate whether they are invoked. Results show that 60%
(360, 341/599, 934) of smart contracts neither transfer money
nor be invoked (i.e., those smart contracts are not used at
all), and thus considerable resources (e.g., network, disk) are
wasted to synchronize and store them.

A. MFG Construction

Definition V.1. M FG = (V, E, w), where V is a set of nodes,
FE is a set of edges and w is a function mapping edges to their
weights. V =V, |J Vie, Vi, is the set of EOAs and V. is the
set of smart contracts. E is a set of ordered pairs of nodes,
E = {(vs,vj)|vi,v; € V'}. The order of an edge indicates the
direction of transferred money. w : E' — R, associates each
edge with a weight, which is the total amount of transferred
Ether along the edge by one or more transactions. Hence, MFG
is a weighted directed graph.

We use the terms account and node interchangeably in the
remainder of this paper. Since all nodes have been enumerated
in the preprocess stage, we add edges to build MFG. Specif-
ically, we parse the value field in each external transaction
of BGjsr, which indicates the amount of money transferred.
If there is no edge from the sender to the recipient, we add
one and set edge’s weight to value. If an edge already exists,
we increase its weight by value. An internal transaction is
processed in a similar way. Table II lists the statistics of MFG,
including the number of edges, the number of isolated EOA,
and the number of isolated smart contracts (sc). An isolated
node in MFG means that it neither receives nor sends Ether.
Only 16,845 EOAs (compared to 2,121,146 in total) do not
transfer money since they are isolated in MFG. The data in
Table II matches the observations from Fig.2(a) that almost
all EOAs transfer money whereas about 2/3 smart contracts
do not do it.

B. CCG Construction

Definition V.2. CCG = (V, E), where V is a set of nodes,
the same as those in Def. V.1. E is a set of edges. E =
{(vs,v5)|vi € V,u; € Vi.}, where an edge (v;,v;) indicates
that an account v; creates a smart contract Vj.

The definition implies several properties of CCG. First, if
(vi,v;) € E, then (v;,v;) ¢ E. That is, the edge between
two nodes is unidirectional. Second, if (v;,v;) € E, then
(vk,vj) ¢ E,Vk # 4. It means that a smart contract cannot be

created twice. CCG is actually a forest consisting of multiple
trees. The root of each tree is an EOA, and the other nodes of
the tree are smart contracts directly or indirectly created by the
root. Since each transaction in BG¢ ¢ indicates the creation of
a smart contract, we add an edge from the transaction sender
to the created smart contract.

The statistics of CCG (Table II) match the observations
from Fig.2(b) that the vast majority of EOAs are isolated, i.e.,
they do not create contracts. Moreover, the smart contracts
(599,934) obviously outnumber the EOAs (i.e., 22,224 =
2,121,146 — 2,098, 922), which create contracts. If an EOA
which creates smart contracts is a developer, the number
of developers is much fewer than that of smart contracts.
In practice, the difference may be more significant since a
developer can have many EOAs.

C. CIG Construction

Definition V.3. CIG = (V, E,w), where V is a set of nodes,
E'is a set of edges, and w is a function mapping edges to their
weights. E is an ordered pairs of nodes, E = {(v;,v;)|v; €
V,v; € Vi.}. An edge (v;,v;) indicates that the account v;
invokes the contract v;. w : IJ — N associates each edge with
a weight, which is the total number of invocations along the
edge by one or more transactions. Hence, CIG is a weighted
directed graph.

To construct CIG, we process every (external and internal)
transaction in BG¢o; to extract the addresses of transaction
sender and recipient. Then, wes add an edge from sender to
recipient and set the edge’s weight to 1 if there is no edge
between them. Otherwise, we increase the edge’s weight by
1. Table II shows the statistics of CIG, which match the obser-
vations from Fig.2 that 73% (1,554, 301/2, 121, 146) of EOAs
do not call smart contracts, and 81% (483,404/599,934) of
smart contracts are not invoked.

We obtain the following insights by building the graphs.

Insight 1. Users prefer to transferring money on Ethereum
instead of using smart contracts. One possible reason is that
many users of Ethereum may have experiences in using
Bitcoin or other cryptocurrency blockchains. However, smart
contracts may be relatively new to them.

Insight 2. The smart contracts are not widely used. One
possible reason is that as shown in Section VI-D there are only
a few applications supported by smart contracts and most of
them are for financial applications.

Insight 3. Not all users frequently use Ethereum. One
possible reason is that most users just try Ethereum and deploy
toy contracts on it.

Fig.3 visualizes the three graphs. They are different and
have noticeable structure features. We can find several commu-
nity structures in them, indicating the existence of a few large
degree nodes and many small degree nodes. In other words,
a few accounts play a vital role in Ethereum. We investigate
the structures of three graphs in Section VI.

VI. GRAPH ANALYSIS

This section investigates MFG, CCG and CIG from various
metrics in graph analysis. Please note that we do not consider
isolated nodes when computing the metrics. We first introduce
the metrics and then detail the observations from each graph
in the following subsections.
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(a) MFG

(b) CCG
Fig. 3. Visualization of MFG, CCG and CIG. For the ease of illustration, we
randomly select 20,000 edges from each graph to draw the figure.

The degree of a node is the number of edges connecting to
the node. Specifically, the degree of a node in MFG indicates
the number of accounts trading with that node. The degree of
an EOA in CCG represents the number of contracts created by
it, while the degree of a smart contract in CCG indicates the
number of contracts created by it plus 1 (for the transaction
to create that contract). The degree of an EOA in CIG is the
number of smart contracts invoked by it, while the degree of
a contract in CIG is the summation of the number of contracts
invoking it and the number of contracts it invokes.

The indegree of a node in a directed graph is the number of
edges whose heads end that node. Specifically, the indegree
of an account in MFG is the number of accounts sending
money to it. The indegree of an EOA in CCG and CIG is
0, since it cannot be created or invoked by other accounts
according to the definitions of CCG and CIG (Def. V.2, Def.
V.3). The indegree of a contract in CCG is 1, because it should
be created only once. The indegree of a contract in CIG is the
number of accounts invoking it. The outdegree of a node in
a directed graph is the number of edges whose tails end that
node. In particular, the outdegree of an account in MFG is the
number of accounts receiving money from it. The outdegree
of an account in CCG/CIG indicates the number of contracts
created/invoked by it.

Before explaining the strong/weak connected component
(SCC/WCC), we define a path in a graph as a sequence of
edges that connect a sequence of nodes. A SCC of a directed
graph G is the maximal set of nodes C' C V' such that for
every pair of nodes w and v, there is a directed path from u
to v and a directed path from v to u. A WCC of a directed
graph G is a maximal set of nodes C' C V' such that for every
pair of nodes u and v, there is an undirected path from u to
v. That is, the direction of edges is ignored when looking for
WCC.

Besides, we compute the global clustering coefficient [11]
to evaluate the extent to which nodes in a graph tend to
cluster together. For example, Section VI-D shows that the
clustering coefficient of CIG approaches zero, meaning that
the collaboration of contracts in CIG is uncommon. Moreover,
we use Pearson coefficient [12] to evaluate the correlation
between the indegree and the outdegree of nodes, compute
the assortativity coefficient to study the preference for nodes
to attach to others, and evaluate node’s importance using the
PageRank algorithm [13].

A. Inferring Node Identity

It is difficult to discover an account’s identity because its
address instead of the identity is enough for an account to
use Ethereum. We make every effort to reveal an account’s
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Fig. 4. Degree/Indegree/Outdegree distributions of MFG

identity by exploiting information from many sources. More
precisely, since Ethereum allows users to associate name tags
with accounts, we could obtain the identity from its name tags.
If a smart contract’s source code is available, we could infer
the identity from it (e.g., comments, keywords). Moreover, we
also resort to discussion boards, forums, and search engines
because many people may interact with or be interested in the
important accounts.

Furthermore, we propose a new method that exploits the
WCC of CCG to infer the identity of a group of accounts. It
exploits the fact that all nodes in a WCC have the same identity
because the root of a WCC is an external owned account and
the other nodes are smart contracts created by the root directly
or indirectly. Hence, our method checks all nodes in the WCC
to look for hints about their identity. In the following example,
for the ease of presentation, we use the first two bytes of
an account’s address (the length of an address is 20 bytes in
Ethereum) to denote it, and list the original addresses in https://
github.com/brokendragon/Ethereum_Graph_Analysis. For the
node 6A39 that creates 12,880 contracts, we cannot find useful
information from it to infer its identity. Instead, by traversing
the WCC containing 6A39, we notice that some contracts (e.g.,
13FC) created by the root (i.e., 99AC) of WCC are open
source. By investigating the comments, constant strings in the
source code, we reveal that all 15,416 accounts in this WCC
were created by the corporation, Incent Loyalty Pty.

B. MFG Analysis

Fig.4 shows the degree/indegree/outdegree distributions of
MEG, all of which follow the power law, meaning that there
are a few large-degree nodes and many small-degree nodes.
We also plot the fitting line y ~ x~ for each distribution. The
larger the «, the less variable of nodes’ degree. As discussed
below, these degree distributions match the investigation of
important nodes in MFG (Table IV) that a few exchange
markets have large degree. The small degree nodes may be
the individuals trading with exchange markets.

We then investigate the distribution of Ether, as shown
in Fig.5(a). Each point (x, y) in this figure indicates that
there are y of total accounts, and each transfers (i.e., sends
and receives) x Ether. Its distribution also conforms to the
power law, denoting that a few accounts transfer a lot of
money. There are some outliers in Fig.5(a). Taking it and Fig.4
into consideration, we learn that the outliers are small-degree
accounts (i.e., they trade with a few accounts) transferring a lot
of money. Fig.5(b) shows the degree statistics of the accounts
in an outlier, the point at (4,002, 0.06). The tag « : ¥% means
that the nodes of degree x account for y% of total nodes. We
find that the degree of nearly 93% of accounts is no larger
than 6.
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TABLE III
METRICS OF THE THREE GRAPHS
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largest largest

graph | cluster | assortativity | Pearson | #SCC SCC #WCC WCC
MFG | 0.17 —0.12 0.44 466,095 | 1,822,192 81 |2,291,707
CCG 0 —0.35 / 622,158 1 22,260 | 126,246
CIG | 0.004 —0.2 0.11 | 682,984 84 4,088 | 668,891

Table III shows the metrics of MFG. Columns 2-8 list the
values of the clustering coefficient, assortativity coefficient,
Pearson coefficient, number of SCC, size (i.e., how many
nodes) of the largest SCC, number of WCC, size of the
largest WCC, respectively. The clustering coefficient is large
(i.e., 0.17), revealing that if two accounts A, B trade with a
third account C, A and B are likely to trade with each other.
The assortativity coefficient is negative, indicating that a large
degree account prefers to trade with a small degree account
rather than a large degree one. Given the analysis of important
nodes in MFG (Table IV), a possible reason is that an exchange
market (large degree node) tends to serve many individuals
(small degree nodes) rather than other exchange markets.

Pearson coefficient is 0.44 (a moderately strong correla-
tion [14]), revealing that a node with large indegree is likely
to have large outdegree and vice versa. That is, an account
will be frequent in both sending and receiving money. Hence,
deposit (frequent in receiving but infrequent in sending) is
uncommon in Ethereum. The size of the largest SCC is huge,
which contains about 86% of nodes (1,822,192/2,121, 146).
It indicates that there should be hub nodes. Such hub nodes
may be exchange markets because they send/receive money
to/from a large number of other accounts.

The number of SCCs (i.e., 466,095) in MFG is far more
than that of WCCs (i.e., 81). In this case, a WCC may usually
contain many SCCs, and the money transfer among differ-
ent SCCs should be unidirectional. Otherwise, the connected
SCCs will merge into a bigger SCC. Therefore, if money is
transferred from one SCC to another, it never comes back. One
possible reason is that some processes or businesses involve
several steps. After each step, money is transferred to another
account (never used in previous stages) for next step.

Table IV lists top 10 most important nodes in MFG, ranked
by the PageRank algorithm. In this table, n means exter-
nal owned account, sc indicates smart contract, PR denotes
PageRank value. Since some accounts’ identities cannot be
successfully recovered, we mark their identity and category
using ‘/” in Table IV.

The exchange markets play a key role in money transfer (8
out of 10-accounts). Since the markets tend to serve ordinary
users (small degree nodes) rather than other markets (large-
degree nodes), the assortativity coefficient is negative. More-
over, exchange markets, which are usually hub nodes connect-
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=
S

I .
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degree size

(a) Degree distribution (b) Size of WCC
Fig. 6. Degree distribution and size of WCC of CCG
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ing to other nodes bidirectionally, result in the huge SCC. The
smart contract, ReplaySafeSplit, is important because it is used
to prevent the attacks that replay transactions between the old
chain and new forked chain [15]. Although using this smart
contract is optional, the analysis result indicates that it is used
frequently, indicating that the risk of replay attack has received
significant attention.

C. CCG Analysis

Fig.6(a) shows the degree distribution of CCG. We do not
present indegree/outdegree distributions because the indegree
of an account is either 0 (EOA) or 1 (smart contract). For the
same reason, we do not measure the correlation of indegree
and outdegree.

The degree distribution of CCG follows the power law,
meaning that a few nodes create a large number of smart
contracts. This observation matches the analysis in Section
V-B that smart contracts outnumber application developers.
Table III also lists the analysis results of CCG. Its clustering
coefficient equals to zero, because if two contracts are created
by the third node, they cannot create each other. Indeed, a
contract cannot be created twice. It matches our expectation
that the size of largest SCC is 1, because there are no cycles
in CCG. Its assortativity coefficient is negative, indicating that
large-degree nodes tend to connect small-degree nodes. That
is, if an account creates lots of contracts, the created smart
contracts are unlikely to create many other smart contracts.
This observation matches the analysis in Section V that smart
contracts rarely create smart contracts.

Surprisingly, the size of the largest WCC of CCG is
126,246, which accounts for 21% (126,246/599,934) of the
total smart contracts. The root of this WCC is an external
owned account (i.e., FDB3), which directly or indirectly cre-
ated 21% of the total smart contracts. In CCG, smart contract
A is said to directly create smart contract B if there is an edge
from A to B. A is said to indirectly create B if A does not
directly create B but there is a path from A to B. Fig.6(b) shows
that most WCCs are very small. Particularly, the number of
WCCs whose sizes are larger than 100 is only 163, accounting
for 0.7% (163/22,260) of total WCCs.

Since the indegree of an account is either O or 1, the
PageRank algorithm does not provide informative values, and
thus we use outdegree to evaluate the importance of nodes
in CCG. Table V lists the top 10 most important nodes in
CCG. The last three rows contain information for anomaly
detection in Section VII-B. The node (i.e., 6090) is a smart
contract created by the root of the WCC (i.e., FDB3). It is a
name service, through which a user can interact with others
by specifying the recipient’s name rather than its address.
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TABLE IV
ToP 10 MOST IMPORTANT NODES OF MFG
account 70FA 209C FA52 AATA 1C39 E94B 9E63 96FC 517C 9BCB
type n SC SC sC sC sC n n n sc
PR 0.057 0.032 0.015 0.015 0.013 0.013 0.012 0.01 0.009 0.008
identity | ShapeShift | Poloniex Kraken ReplaySafeSplit | ShapeShift Bittrex ShapeShift | Changelly / ShapeShift
category exchange | exchange | exchange attack-related exchange exchange exchange exchange / exchange
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Fig. 7. Degree/Indegree/Outdegree distributions of CIG
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Moreover, we notice that all smart contracts created by 6090
are open source and the same as 6090. In other words, 6090
makes lots of copies. The smart contract EDCE is created by
a leading boutique consulting group, New Alchemy, and the
smart contract 6A39 is created by Incent Corp. that supports
money transfer between Ethereum and Wave.

Attacks on Ethereum can be detected by inspecting the
activities of contract creation. For example, the two attack-
ing accounts 7C20 [16] and 3898 [17] created lots of junk
contracts that cost considerable disk space and slow down
the synchronization of blockchain. We will detail how to
discover abnormal activities similar to the aforementioned
DoS attacks in Section VII-B. Without counting the contracts
created by attacks and abnormal accounts, we find that about
62% (296,691/476, 746) of smart contracts are created by six
accounts. Moreover, 5 out of 6 most important applications
(without counting attacking and abnormal accounts) are for
finance, including exchange markets. Hence, we have the
following insight.

Insight 4. A small number of developers created lots of
smart contracts. By downloading and inspecting all smart
contracts (284,948) created by EOAs, we find that there are
only 17,509 (i.e., 6%) unique smart contracts.

D. CIG Analysis

Fig.7 gives the degree/indegree/outdegree distributions of
CIG, all of which follow the power law. Indegree distribu-
tion reveals that the majority of contracts are invoked by a
few accounts, and outdegree distribution indicates that most
accounts invoke a few contracts. We can learn that not all
contracts are widely used and similarly not all users frequently
use Ethereum. Table III gives the measurement results of CIG.
We do not consider EOAs when evaluating the correlation of
indegree and outdegree (i.e., Pearson coefficient) because the
indegree of an EOA is always zero.

Pearson coefficient is 0.11, indicating a very weak corre-
lation between indegree and outdegree [14]. The clustering
coefficient approaches zero, meaning that if an account A
calls contract B and C, then B and C are very unlikely to
call each other. The possible reason is that most contracts are
not so complicated that they do not need to invoke others. The
negative assortativity coefficient suggests that the large-degree
nodes tend to connect small-degree nodes.

Table VI lists top 10 most important nodes ranked by the
PageRank algorithm in CIG. Contract AAIA is an important

DB89:703

pe=

FCD0:7

OF57:47
b

7C20:34,144

1584:39
V)

Fig. 8. Attack forensics of BD37. We randomly select 10,000 contracts created
by 7C20 for the ease of illustration. No contracts created by 7C20 are invoked.
node in MFG since it aims at preventing replay attacks. All
except two smart contracts in the list are exchange markets.
Specifically, TheDAO is a digital decentralized autonomous
organization. REG-Augur is an application of Augur, which
is a prediction market platform that rewards participants for
correctly predicting future real-world events. As a result, we
have the following insight.

Insight 5. Financial applications, such as exchange markets,
dominate Ethereum because they are the most important nodes
in money transfer (Table IV), contract creation (Table V)
and contract invocation (Table VI), although Ethereum allows
different types of applications [9].

VII. APPLICATIONS BASED ON CROSS-GRAPH ANALYSIS

Besides inspecting individual graphs, we propose new ap-
proaches based on cross-graph analysis to address two im-
portant security issues in Ethereum, including attack forensics
(Section VII-A) and anomaly detection (Section VII-B).

A. Attack Forensics

Given a malicious smart contract, attack forensics intends
to find all accounts controlled by the attacker. To achieve
this goal, we correlate CCG and CIG to obtain all smart
contracts created by the attacker and all accounts invoking
such smart contracts. More precisely, we first compute the
WCC containing the malicious contract from CCG to collect
all contracts (directly or indirectly) created by the root. Then,
for each node in the WCC, we locate all callers from CIG. If a
caller is a smart contract, we backtrack in CIG until reaching
an EOA. Eventually, all nodes in the WCC and all nodes
(directly or indirectly) invoking the nodes in the WCC are
controlled by the attacker.

Fig.8 shows our analysis result of a real case, where the
node BD37 is a malicious contract for a DoS attack [16].
The WCC containing BD37 roots in the node FCDO. The
notation x:y indicates that node x creates y contracts. We can
see that 7C20 creates 34,144 contracts, which is one of the
top important nodes in CCG (Table V). Fig.8 highlights the
nodes in red if they are invoked and the edges connecting to
the red nodes. By doing so, it presents attacking-related nodes
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TABLE V
ToP 10 MOST IMPORTANT NODE OF CCG
account 6090 B42B 8B3B 42DA 7C20 EDCE 0536 29DF 3898 6A39
type sC n SC n SC sC n sC n sC
outdegree 126,233 62,786 54,445 43,134 34,144 31,453 20,219 18,605 15,994 | 12,880
identity name service | Poloniex / YUNBI / New Alchemy | Poloniex / / Incent
category fundamental exchange | anomaly exchange attack finance exchange | anomaly | attack | finance
Ether 4,753,280 1,049,504 144 15,392,521 0 4505 890 0 0 64,827
# invoke 3 33,577 10 1,218,859 2 42,025 15,481 2 1,122 2,699
T2(3) X size(sc_set) 63,117 31,394 27,224 21,568 17,074 15,728 10110 9,304 7,997 6,440
TABLE VI
TopP 10 MOST IMPORTANT NODES OF CIG
account 209C AATA FAS52 BB9B 1C39 E94B A744 9BCB BFC3 48C8
type SC sC sC sC SC sC sC sC sc sC
PR 0.071 0.05 0.033 0.029 0.028 0.027 0.016 0.015 0.011 0.011
identity | Poloniex | ReplaySafeSplit Kraken TheDAO ShapeShift Bittrex Golem ShapeShift | Poloniex | REP-Augur
category | exchange attack-related exchange | organization | exchange | exchange | exchange exchange exchange predict
Algorithm 1 Detection of abnormal contract creation 1.0
Inputs: x, the detected account 0.8
MFG, money flow graph ao6 10 ] (76582,1.0)
CCG/CIG, contract creation/invocation graphs
T1,T2,T3, thresholds 0.4 0.5 (0,0.91)
Outputs: True/False, x is abnormal/benign 0.2 0.00
sc_set = created_sc(CCG, x); 0.0 12 4 26 8 ];O . s
if size(sc_set) < T1 return False; 10 10 10 10 10 10

1
2

3 for each node y in sc_set

4 caller_set = inedge(CIG, y);

5 for each edge z in caller_set

6 num += z.weight;

7 sender_set = inedge(MFG, y);

8 for each edge s in sender_set

9 value += s.weight;

10 if num > T2 x size(sc_set) || value > T3 x size(sc_set)
11 return False;

12 else return True;

and edges from both CCG and CIG. Using this approach, we
find that the attacker controls 34,983 accounts in total, where
34,939 are smart contracts but only 9 were invoked.

B. Anomaly Detection

We design a new approach to detect abnormal contract
creation, which consumes lots of resources (e.g., disk, net-
work) by creating a great number of contracts, because every
Ethereum client has to maintain a copy of the blockchain.
An intuitive detection approach is to count the number of
created contracts. Unfortunately, it is not enough because
benign applications (e.g., exchange markets) may also create
many contracts for their businesses (Table V). As show in
Algorithm 1, our detection algorithm regards an account as
abnormal if it creates lots of contracts that are rarely used to
transfer money or invoked. This algorithm correlated the three
graphs to detect abnormal activities.

The inputs of the detection algorithm include an account x,
MFG, CCG, CIG and three thresholds (i.e., T'1, T2, T3). It
returns True if x launches a campaign of abnormal smart con-
tract creation, or False otherwise. It first obtains all contracts
directly or indirectly created by x from CCG (Line 1). If the
number is smaller than 7’1, the algorithm considers x to be
benign (Line 2) because not many accounts are created. For
each created smart contract y (Line 3), all edges pointing to it
are obtained from CIG (Line 4). Since the weight of an edge
of CIG is the number of invocations, num is the total number
of invocations to all contracts belonging to the WCC (Line
6). Besides, the amount of Ether (i.e., value) transferred by y
is computed based on MFG (Line 9). If num is smaller than
T2 xsize (sc_set) and value is smaller than T3 Xxsize (sc_set),

creation interval (sec)

Fig. 9. Cumulative distribution of time interval between two consecutive
contract creation events

TABLE VII
COMPARISON OF ETHEREUM WITH BITCOIN
Blockchain | Account | Balance | Change Multi- | Multi- | Many
inputs | outputs | addresses
Ethereum v v X X X X
Bitcoin X X v v v v

x is considered as abnormal since the contracts in the WCC
are rarely used both in money transfer and contract invocation.

Table V presents the amount of transferred Ether and
the number of invocations of all smart contracts created by
the top 10 most important nodes of CCG. The results of
T2(3)xsize(sc_set) are also given in Table V. By setting T'1,
T2 and T3 to be 10,000, 0.5, 0.5 respectively, we detect
four abnormal accounts, 7C20, 3898, 8B3B and 29DF. Note
that the thresholds could be learned from the activities of
normal accounts, and we will investigate it in future work.
For 7C20, both the amount of transferred Ether (i.e., O Ether)
and the number of invocations (i.e., 2) are very small, and
hence it is regarded as abnormal by our detection algorithm.
As another example, 3898 creates lots of contracts in short
time period, which could slow down the propagation speed of
blocks significantly. Fig.9 shows the CDF of the time intervals
between two consecutive contract creation events due to 3898.
We can see that 91% (point (0, 0.91)) of contracts are created
in a very short period of time. This can serve as another
indicator for detecting abnormal activities. Actually, 7C20 and
3898 have already been confirmed to be attacks [16], [17]. The
other two suspicious accounts have similar activities, and we
have reported them to the Ethereum community.

VIII. RELATED WORK

To the best of our knowledge, this is the first investigation
on Ethereum through graph analysis. Although there are some
graph-based studies on Bitcoin, our investigation of Ethereum
needs new analysis methods due to the differences in func-
tionalities and protocols between Ethereum and Bitcoin.
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A. Ethereum vs. Bitcoin

Although Bitcoin has a basic scripting mechanism, it does
not support complex programs like smart contracts. Moreover,
Table VII lists the major differences in money transfer. There
are no accounts or balances in Bitcoin but Ethereum has
them. The basic block of a Bitcoin transaction is an unspent
transaction output (UTXO). When a user receives BTC (the
cryptocurrency used in Bitcoin), the amount is recorded in the
blockchain as a UTXO. Thus, a user’s BTC may be scattered
in multiple UTXOs [18]. The balance of a user is calculated
by the wallet application which scans the blockchain and
aggregates all UTXO belonging to that user [18]. By contrast,
each account of Ethereum associates an address and has a
balance field to record the money.

A transaction of Bitcoin can have change, because after
a UTXO is created it cannot be cut in half. If a UTXO is
larger than desired, the whole UTXO will be consumed and
change will be produced in that transaction. In Ethereum, an
account sends exact amount of money to another, and hence
there is no change. A transaction of Bitcoin can have multiple
inputs and multiple outputs, because the wallet can aggregate
multiple UTXOs belonging to the same user (i.e., multiple
inputs) for payment, and send money to many recipients in
one transaction (i.e., multiple outputs). Note that a transaction
of Ethereum comes from one sender to one receipt. Moreover,
a user of Bitcoin often has many addresses whereas Ethereum
associates one EOA with one address.

B. Graph Analysis of Bitcoin

Recent studies [19]-[24] examine the P2P overlay of Bit-
coin. Miller et al. find influential nodes in P2P topology [20]
while others [21], [22] characterize network latency, client
latency etc. Donet et al. investigate propagation time, location
distribution, and network stability of Bitcoin P2P network [24].
Bojja et al. leverage P2P topology and P2P traffic for
deanonymization [19], [23]. Different with them, we focus on
Ethereum’s money transfer and smart contracts rather than its
communication network. Reid et al. [5] abstracts Bitcoin into
a transaction graph, where each node represents a transaction
and a directed edge from node A to node B means that the
output of A is the input of B. Due to Bitcoin’s unique features
in Table VII, Meiklejohn et al. propose address clustering to
associate users with their addresses [6]. Then, Bitcoin can be
modeled as a user graph, based on which some applications
have been developed, such as deanonymization [5], and money
laundering detection [7], [8]. Ranshous et al. [25] introduce a
special graph whose nodes are either transactions or addresses
to detect money laundering. Note that these approaches cannot
be directly applied to Ethereum due to the obvious differences
between Ethereum with Bitcoin.

IX. CONCLUSION

We conduct the first systematic study to characterize
Ethereum through graph analysis. By customizing EVM client,
we collect all transaction data and then construct three graphs
(e.g., MFG, CCG and CIG) to characterize the activities of
money transfer, contract creation, and contract invocation, re-
spectively. By analyzing these graphs through various metrics,
we obtain many new observations and insights, which help

people have a deep understanding of Ethereum. Moreover,
we propose new approaches based on cross-graph analysis
to address two security issues in Ethereum and the evalu-
ation through real cases demonstrates their effectiveness. In
future, we will conduct a more thorough study of Ethereum
including its evolution using more graph metrics and develop
more applications (e.g., detection of DoS attacks). The cus-
tomized Ethereum client, collected data, and processing scripts
can be found at https://github.com/brokendragon/Ethereum_
Graph_Analysis.
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