
IntelliCon: Confidence-Based Approach
for Fine-Grained Vulnerability Analysis

in Smart Contracts

Yiming Shen1, Kunhua Li1, Lin Mao2, Wenkai Li1, and Xiaoqi Li1(B)

1 School of Cyberspace Security, Hainan University, Haikou 570208, China
csxqli@gmail.com

2 School of Computer Science and Technology, Hainan University, Haikou 570208,

China

Abstract. Ethereum smart contracts are programs that execute trans-
actions on a distributed ledger platform without intermediaries. How-
ever, they are prone to various types of vulnerabilities that can affect
their security and functionality. In this paper, we present IntelliCon,
a novel framework that leverages a pre-trained identifier-aware encoder-
decoder CodeT5 model and confident learning to detect seven types of
vulnerabilities in Ethereum smart contracts. Confident learning is a tech-
nique that improves dataset quality by identifying and correcting noisy
labels, particularly in the presence of multiple annotators with varying
levels of accuracy. We fine-tune CodeT5 on a dataset of 27,426 smart
contracts annotated by multiple tools and pruned by confident learn-
ing to ensure that the model learns genuine vulnerability features rather
than tool-specific features. Furthermore, we utilize abstract syntax tree
(AST) analysis to extract code gadgets with sliding windows to locate
the function that may contain code vulnerabilities. We evaluate the
effectiveness of our framework in vulnerability detection with F1-score.
Our results indicate that IntelliCon achieves high Micro-F1 (0.9591)
and Macro-F1 (0.9293), outperforming existing methods. Moreover, our
framework demonstrates its ability to handle imbalanced data, noisy
labels, and complex code structures. IntelliCon contributes to improv-
ing the security and reliability of smart contracts, providing insights for
future research on code generation tasks.

Keywords: Blockchain · Smart Contract · Confident Learning ·
Vulnerability Detection · Deep Learning

1 Introduction

Recently, blockchain [1] technology has experienced rapid development in various
fields (e.g., finance, healthcare, supply chain, and IoT) [2]. However, the vulner-
abilities of smart contracts have given significant concerns, resulting in financial
losses, system failure, and damage to the platform’s reputation. According to the

c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
J. Chen et al. (Eds.): BlockSys 2023, CCIS 1896, pp. 45–59, 2024.
https://doi.org/10.1007/978-981-99-8101-4_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-8101-4_4&domain=pdf
https://doi.org/10.1007/978-981-99-8101-4_4

46 Y. Shen et al.

Blockchain Security and AML Analysis Annual Report of SlowMist [3], 30.3%
of the 303 blockchain security events recorded in 2022 were due to contract vul-
nerabilities. Notably, high-profile security incidents in the Ronin Network,
and the Wormhole network resulted in losses exceeding $610 million and
$300 million, respectively [4]. These incidents emphasize the urgent need for
enhanced security measures to safeguard users’ assets and mitigate potential
security risks.

Smart contract vulnerabilities pose a significant risk to the security and
integrity of blockchain systems, necessitating the development of effective tech-
niques for their detection and mitigation [5]. Traditional methods for detecting
smart contract vulnerability rely on static or dynamic analysis. Static analysis
examines the source code or bytecode of smart contracts without executing them,
while the dynamic analysis runs smart contracts with test inputs or fuzzing tech-
niques. However, these methods have limitations such as slow processing, high
false positives/negatives rates, low coverage, and scalability issues. To address
the limitation of traditional methods for detecting smart contract vulnerabili-
ties, machine learning-based methods [6] have been proposed. These methods
leverage various algorithms or models to learn patterns or features from code
snippets and classify them as vulnerable or non-vulnerable.

Moreover, existing large datasets (e.g., SmartBugs [7]) are often labeled by
multiple traditional vulnerability detection tools. While models trained on these
datasets can achieve high performance, they are limited by these traditional
tools. In essence, as long as the neural network replicates expert-defined rule, it
can achieve a high F1 close to 1. Therefore, these training results merely simulate
or synthesize the functions of the original tools, rather than truly learning the
underlying causes of vulnerabilities.

In this paper, we propose IntelliCon, a CodeT5-based detection framework
for smart contracts that address the limitations of traditional methods. The
source code of the smart contract is processed as an abstract syntax tree (AST)
to collect code gadgets and then fed to the CodeT5 model. Our framework also
utilizes confident learning technology during training to improve the labeling
consistency of the dataset. To provide a measure of confidence in the accuracy
of our model, we construct a set of prediction ranks around its predictions. By
leveraging these prediction ranks as a decision criterion, potentially incorrect
forecasts can be filtered out, leading to an improvement in the overall accuracy
of the model. The experimental results demonstrate that our framework achieves
a micro-F1 score of over 95%, and a macro-F1 score of over 92%, outperforming
the existing popular pre-training frameworks (e.g., Bert and T5) in terms of
detection ability.

The main contributions of this paper are as follows:

• We propose a novel framework that leverages identifier-aware CodeT5 and
multi-label learning to identify seven types of vulnerabilities in Ethereum
Smart contracts.

• We are the first to utilize confident learning to improve the quality of datasets
that involve multiple traditional analysis tools with varying levels of accuracy

IntelliCon: A Confidence-Based Analysis Framework 47

in smart contracts vulnerability labels. By identifying and correcting noisy
labels, we enable the model to acquire genuine vulnerability features during
subsequent training.

• We enhance interpretability in machine learning-based vulnerability detection
methods by providing fine-grained code gadgets that can potentially expose
the sources of these vulnerabilities.

The remainder of this paper is organized as follows. In Sect. 2, the background
of our research was reviewed. Section 3 presents our IntelliCon framework.
Section 4 evaluates our framework and compares it to other approaches. Section 5
introduces the related work. Finally, we conclude our work and provide directions
for future research in Sect. 6.

2 Background

2.1 Ethereum Smart Contract Security Threats

The Ethereum [8] is a blockchain platform that supports smart contracts, which
are programs that record transactions and perform logic. However, smart con-
tracts can also pose security risks [9], such as reentrancy, integer overflow, denial
of service, unchecked low calls, and improper access control. These risks can lead
to malicious attacks or exploits, resulting in loss of funds.

2.2 Pre-trained Language Model

Pre-trained language models in natural language processing (NLP) involve
obtaining general language representations from large datasets. It results in a
better semantic representation that can be applied to the downstream tasks
(e.g., text classification). As the need for semantic representation and static word
embeddings to deep semantic word embeddings through word vectors, more pre-
training models have gained significant attention (e.g., GPT, BERT, T5).

2.3 Text Classification Task

Text classification is a process of assigning labels to text data. Given X =
{x1, x2, ..., xn} and Y = {y1, y2, ..., yk}, where each xi is a document consisting
of a sequence of words {w1, w2, ..., wm}, each yi represents a class label. Text
classification learns a function f : X → Y that maps each xi to its corresponding
label. Once the model is trained, the function can be used to predict the label of
a new document Xnew. Xnew feed to f , which outputs a predicted label ŷ based
on the learned mapping from the X to Y .

3 IntelliCon

In this Section, we will give a detailed description of IntelliCon, a confident
learning-based approach for fine-grained vulnerability detection in Ethereum
smart contracts, leveraging the identifier-aware CodeT5 model.

48 Y. Shen et al.

Fig. 1. Training Phase of the IntelliCon Framework

3.1 Overview

The IntelliCon framework consists of two main phases: model training in Fig. 1
and vulnerability detection in Fig. 2. The first phase is to train a code-aware fine-
grained encoder-decoder model that can identify seven types of vulnerabilities
in Ethereum smart contracts with confident learning. We adopt CodeT5 [10], a
state-of-the-art pre-trained model for code understanding based on the T5 archi-
tecture. In addition, we apply self-confidence learning to improve the quality of
our dataset by removing noisy data, thereby enhancing the learning effectiveness
of the vulnerability features.

The second phase is to analyze the input code to interpret the specific code
gadgets that caused the vulnerability. We compile to parse the input code and
generate an abstract syntax tree (AST) representation to gather code gadgets.
Then we tokenize and feed code gadgets into the fine-tuned CodeT5 model,
classifying the vulnerabilities. Details about the vulnerability detection phase
will be discussed in Sect. 3.4.

3.2 Model Details

In this section, we will introduce our model in the following steps: pre-processing,
feature extraction, fine-tuning, confident learning, and vulnerability detection.

Pre-processing. First, the smart contract undergoes an initial conversion to
an AST, followed by extracting code fragments from the AST. Specifically, a
rule-based approach is employed to extract code gadgets from the AST that
pertain to each vulnerability type, guided by their corresponding definitions and
characteristics. For example, in the reentrancy vulnerability, code gadgets are

IntelliCon: A Confidence-Based Analysis Framework 49

Table 1. Contract Simplification Rules

Level Remove Rules

Source Layer i. The code describing the ver-
sion of source files
ii. The code for importing
other contracts
iii. Comment lines in various
formats
iv. Spaces and line breaks

Contract Layer i. Event definition
ii. Library definition

Function Layer Functions of pure and view
types

identified that represent external calls made to untrusted contracts or functions.
Second, according to Ethereum Yellow Paper [11], we summarize the following
Table 1 that needs to be deleted from the source code.

Feature Extraction. To prepare code gadgets for fine-tuning with CodeT5, it
is necessary to convert them into numerical features that the model can process.
In this study, we utilized RobertaTokenizer, which divides each code gadget
into a sequence of subword tokens and truncates or pads the sequence with
<pad> tokens to attain a fixed length. Additionally, the tokenizer includes spe-
cial tokens, <s> and </s>, at the start and end of the sequence, respectively.
Finally, the sequence is mapped numerically to the appropriate IDs based on the
CodeT5 vocabulary.

Fine-Tuning. In this study, we fine-tune the CodeT5 model for our multi-
label vulnerability detection task. Given an input code x and its corresponding
binary label vector y = (y1, ...yn), where yi indicates the presence and absence
of vulnerability types i in x. However, due to severe class imbalance and discrep-
ancies in the learning difficulties among labels, we have adopted the Zero-Level
Positive and Negative Relationship (ZLPR) loss function and a class-weighted
imbalanced sampler.

In Eq. 1, ZLPR optimizes pairwise comparisons of target class scores with
non-target class scores and effectively balances the weight of each item using
LogSumExp properties.

Loss = log(1 +
∑

i∈Ωneg

esi) + log(1 +
∑

j∈Ωpos

e−sj) (1)

where Ωpos, Ωneg are the positive and negative class sets of the samples, respec-
tively, si represents the score of the i-th class, while sj is the j-th class.

50 Y. Shen et al.

As Eq. 2 shows, the sampler sampling probabilities to each label combina-
tion by tallying their occurrences. It helps to determine the optimal ratio of
oversampling and undersampling.

p(Ni) =
(1

count(Ni)
)

n≤2k∑
i=1

(1
count(Nj)

)
(2)

3.3 Confident Learning

To solve the issue of inconsistent and noisy labeling caused by the use of multiple
tools for dataset annotation, We employ confident learning (CL) [12]. Specifically,
CL assumes a class-conditional noise process, where the noisy labels depend
only on the latent true labels, not on the data. By utilizing CL probabilistic
thresholds and ranking examples to train with confidence, CL can estimate the
joint distribution between noisy and true labels.

Using a fine-tuned CodeT5 model, we have calculated the out-of-sample prob-
ability of each smart contract instance via cross-validation. The resulting out-
of-sample probability, combined with the noisy label, served as the input for CL
leveraging rank pruning [12] to compute the problem label. We evaluated the
confidence score of the data to correct potential label errors in the dataset.

Rank Pruning. We define the dataset as having n training instances, where
each instance x has a true label y ∈ {0, 1} and a corresponding noisy label s ∈
{0, 1}. The observed dataset can be expressed as {(x1, y1), (x2, y2), . . . , (xn, yn)}.
The set of positive instances is defined as P̃ = {x|s = 1} and the set of negative
instances is defined as Ñ = {x|s = 0}.

To map s to y, we employ a classifier g along with the parameters LB, UB,
ρ0, and ρ1. For a given instance x, the predicted value of g(x) is transformed
into ŝ, which takes a binary value of 0 or 1. The threshold LBy=1 is used to
determine the true label for x. If the g(x) of higher than LBy=1, indicating that
x has a true label of y = 1 with high confidence. Similarly, for UBy=0, if g(x) is
lower than LBy=1, x has a true label of y = 0 with high confidence.

The noise rates are defined as ρ1 = P (s = 0|y = 1) and ρ0 = P (s = 1|y = 0).
Let ps1 denote the observed positive label P (s = 1), and py1 denote the true
positive label P (y = 1). Thus, the reverse noise rates can be calculated as Eq. 3.

π0 = P (y = 1 s = 0) =
ρ1py1

(1 − ps1)

π1 = P (y = 0 s = 1) =
ρ0(1 − ρy1)
(1 − ps1)

(3)

Therefore, py1 can be derived by combining ρ1, ρ0, π0, and π1.
To approximate this result under trivial conditions, confident learning uses

confidence counts to estimate the original noise rates. The noisy labels are
assumed to be uniformly random with the Eq. 4.

IntelliCon: A Confidence-Based Analysis Framework 51

ρ̂1 =
Ñy=1

Ñy=1 + P̃y=1

; ρ̂0 =
P̃y=0

Ñy=0 + P̃y=0

π̂1 =
ρ̂0
ps1

× 1 − ps1 − ρ̂1
1 − ρ̂1 − ρ̂0

; π̂0 =
ρ̂1

1 − ps1
× ps1 − ρ̂0

1 − ρ̂1 − ρ̂0

(4)

where:

LBy=1 = P (ŝ = 1|s = 1) = Ex∈P̃ (g(x)) = (1 − ρ1)(1 − π1) + ρ0π1

UBy=0 = P (ŝ = 1|s = 0) = Ex∈Ñ (g(x)) = (1 − ρ1)π0 + ρ0(1 − π0)

P̃y=1 = {x ∈ P̃ |g(x) ≥ LBy=1}; Ñy=1 = {x ∈ Ñ |g(x) ≥ LBy=1}
P̃y=0 = {x ∈ P̃ |g(x) ≤ UBy=0}; Ñy=0 = {x ∈ Ñ |g(x) ≤ UBy=0}

(5)

The pruning can be performed as follows steps. First, select the π̂1|P̃ |
instances with the smallest g(x) as the set P̃conf , and the π̂0|Ñ | instances with
the highest g(x) as Ñconf , Xconf= P̃conf ∪ Ñconf . Next, defining yi as the pre-
dicted label for sample i, the loss function for Rank Pruning is represented by
the class-conditional weighted loss function on Xconf :

l̃(ŷi, si) =
1

1 − ρ̂1
l(ŷi, si) · I[[xi ∈ P̃conf]] +

1
1 − ρ̂0

l(ŷi, si) · I[[xi] ∈ Ñconf] (6)

We incorporate this method to correct label errors by manually removing low-
confidence items. To show the effectiveness, we evaluate the CL on our dataset
quality and model performance in Sect. 4.4.

3.4 Vulnerability Detection

Fig. 2. Detection Phase of the IntelliCon Framework

To detect vulnerabilities in smart contracts, we first fine-tuned a CodeT5 model
on a pruned dataset using preprocessing and CL methods. We then compiled the
contract to be analyzed and performed AST analysis to traverse its syntax paths

52 Y. Shen et al.

and parse all the function fragments into code gadgets. Tokenization was applied
to the code gadgets, and the sliding window and fragment integration techniques
described in Sect. 4.2 were utilized to split the code gadget tokens that exceeded
the maximum input length set by the model. The fine-tuned CodeT5 model was
used to encode them into latent representations using a transformer encoder. A
linear layer was applied on top of the encoder outputs to generate the multi-label
vectors for each code gadget, indicating the presence of each vulnerability type.
The detection phase is depicted in Fig. 2.

4 Experiment

In this section, we will introduce the experimental results of the IntelliCon.

4.1 Experimental Settings

Dataset. We use the SmartBugs-Wild dataset [7] as our source of smart con-
tract code gadgets for fine-tuning CodeT5. This dataset contains 47,398 smart
contracts extracted from the Ethereum network and analyzed by SmartBugs [13].
However, the labeling of the SmartBugs-Wild is based on nine categories of tra-
ditional tools. It may result in variations in detection capabilities and accuracy,
thus may introducing potential noise and inconsistency labels. Furthermore, the
smart contracts in the dataset comprise the entire source code, as opposed to
code snippets that focus on specific vulnerabilities. This may present challenges
for the model to learn the relevant features and patterns from the code. Addi-
tionally, as shown in Table 2, the class distribution of data points in the dataset
is significantly imbalanced, which may have implications for model performance.

Table 2. The Description of Dataset

Mark Category Description Label Percent

L1 Access control Failure to use function modifiers or
use of tx.orgin

3,801 3.07%

L2 Arithmetic Integer over/underflows 37,597 30.36%

L3 Denial of service The contract is overloaded with
requests or computational resources

12,419 10.03%

L4 Front running Transactions are included in
a block before being mined

8,161 6.59%

L5 Reentrancy Repeatedly execute a function by
exploiting an external contract’s
callback function

14,773 11.91%

L6 Time manipulation Miner can manipulate the timestamp
of a block

4,069 3.29%

L7 Unchecked low level calls call(), delegatecall() or send() fails 14,656 11.84%

– Others Contracts with none or unknown vulns 28,355 22.90%

Total Labels 123,805 100%

IntelliCon: A Confidence-Based Analysis Framework 53

After Pre-processing mentioned in Sect. 3.2, a new dataset of 27,426 code
gadgets was gathered, including seven vulnerability types (i.e., access control,
arithmetic, denial of service, front running, reentrancy, time manipulation, and
unchecked low-level calls).

Environment. We conducted our experiments on a server with an AMD EPYC
7543 CPU (2.80 GHz, 32 cores), 28 GB of RAM, and an NVIDIA RTX A5000
GPU (24 GB of memory) on Ubuntu 20.04LTS. We used PyTorch 1.12.1 and
Transformers 4.16.2 to implement and run the CodeT5 model with a pre-trained
checkpoint from HuggingFace’s model hub. We used Cleanlab 2.3.1 to apply the
confident learning technique to prune the dataset. We performed our experiments
in April 2023 using a stable network connection.

4.2 Model Tricks

IntelliCon aims to provide a smart contract vulnerability detection service
under real conditions. In this experiment, the maximum sequence length is set
to 521 (>512) to demonstrate that CodeT5 can surpass the length limit of tra-
ditional transformer structures of 512 and handle long sequence text tasks. It is
worth noting that 521 is only an arbitrary value set for batch processing, and
considering the size of video memory, IntelliCon can actually handle the text
of any sequence length.

Fig. 3. Diagram of Sliding Window

At the same time, considering the performance of real devices, we provide
an alternative prediction method based on fragment integration, which enables
IntelliCon to successfully process ultra-long sequence text (sequence length
more than 1000000) under low GPU memory. In this method, Our framework
split the ultra-long sequence by setting part length and obtaining multiple blocks
with a length of part length. Finally, IntelliCon predicts each part through a
sliding window shown in Fig. 3 and synthesizes the results. We also apply this

54 Y. Shen et al.

method to locate vulnerabilities by repeatedly splitting unit blocks until the
model cannot recognize them, finding the minimum block where

∑
(label) �= 1,

thus achieving vulnerability location.
To ensure the model is fast, stable, and accurate, We use AdamW as an

optimizer with a learning rate of 5e−5, adam epsilon of 1e-8, warmup steps
of 100 and a batch size of 8 for 100 epochs. In our approach, training sets,
validation sets, and test sets are divided into 6:2:2. We added a dropout layer
to the downstream classifier with a dropout probability of 0.5 to further avoid
overfitting the model. We also use an early stopping mechanism with a patience
value of 5.

IntelliCon uses Cleanlab [12] and manual evaluation methods to denoise
data. Cleanlab is an open-source project based on confidence learning that pro-
vides corresponding modules to discover, evaluate, and repair datasets.

Moreover, to rectify the issue of class imbalance present in our dataset, we
have implemented the ZLPR loss function in conjunction with an imbalanced
dataset sampler, which serves to restore balance to the class distribution. In
addition, we have incorporated dropout layers and early stopping techniques to
mitigate the concern of overfitting.

4.3 Data Pruning with Confident Learning

We first split our dataset into a training set, a validation set, and a test set.
We use the training set to train our identifier-aware CodeT5 model and obtain
the predicted probabilities for each example and each class. We then use CL
to estimate the joint distribution between noisy (given) labels and uncorrupted
(unknown) labels, based on the principles of pruning noisy data and ranking
examples to train with confidence.

Fig. 4. Data Confidence Distribution Chart

IntelliCon: A Confidence-Based Analysis Framework 55

The density plot of the data confidence score distribution for the dataset is
shown in Fig. 4, which shows that the vast majority of the data has a confidence
score near 1.000, with approximately 10% of the data having a label confidence
score of less than 0.207, indicating a higher likelihood of label errors. After
manually inspecting this portion of the data, and removing labels that were
confirmed to be incorrect, We obtained our Pruned Dataset.

We then retrain our identifier-aware CodeT5 model on the Pruned Dataset
and evaluate its performance on the validation set. We compare the results with
the baseline model that is trained on the original training set without CL in the
next section.

4.4 Evaluation

In this section, we present a comparison between our identifier-aware CodeT5
model with CL (CodeT5+CL) and other models that utilize various architec-
tures and techniques to detect vulnerabilities in Ethereum smart contracts. Our
baselines include BERT, T5, and CodeT5 models trained with and without con-
fident learning to prune datasets.

We use the F1-score as the main metric to evaluate the performance of each
model on each vulnerability type. The results are shown in Table 3.

From Table 3, we can see that our CodeT5+CL model outperforms all the
baselines on all the vulnerability types and achieves the highest Micro-F1 score
of 0.9591 and Macro-F1 score of 0.9293. This shows that our model can effec-
tively and precisely detect vulnerabilities in Ethereum smart contracts by using
identifier-aware CodeT5 and confident learning (Fig. 5).

Table 3. Performance of models with and without CL

Model Method Micro Macro F1-Score

-F1 -F1 L1 L2 L3 L4 L5 L6 L7

Bert – 0.8992 0.8509 0.7493 0.9597 0.9507 0.7988 0.7912 0.8111 0.8957

Bert CL 0.9320 0.8869 0.7929 0.9764 0.9478 0.8685 0.8599 0.8235 0.9395

T5 – 0.8971 0.8516 0.7443 0.9506 0.9379 0.8216 0.7991 0.7953 0.9126

T5 CL 0.9370 0.9045 0.8254 0.9775 0.9569 0.8961 0.8526 0.8626 0.9486

CodeT5 – 0.9338 0.8855 0.7579 0.9752 0.9739 0.8667 0.8673 0.8086 0.9490

CodeT5 CL 0.9591 0.9293 0.8290 0.9855 0.9757 0.9222 0.9081 0.9151 0.9696

56 Y. Shen et al.

Fig. 5. F1 Score of models

We can also observe that using CL to prune the dataset improves the per-
formance of both BERT and T5 models by about 5.12% on average F1-score,
compared to using the original dataset without CL. This evidence illustrates that
the utilization of CL can significantly augment the quality of dataset labeling
performed by multiple annotators, especially when their individual accuracies
vary. Additionally, it effectively mitigates the adverse effects of erroneous or
imprecise labels on the subsequent phases of model training and evaluation.

4.5 Discussion

Our work evaluated the effectiveness of confident learning in detecting vulnera-
bilities in smart contracts. The results show that our proposed model achieves
a Micro-F1 score of 0.9591 and a Macro-F1 score of 0.9293, which outperforms
Bert, Bert+CL, T5, T5+CL, and CodeT5. This demonstrates the efficacy of our
model and confident learning in improving label quality.

IntelliCon has the potential to effectively and efficiently assist in detecting
and analyzing seven types of vulnerabilities in smart contracts, thereby enhanc-
ing the security of blockchain-based applications and providing valuable insights
for developers and auditors in the blockchain industry.

Future research directions include applying our framework to other
blockchain platforms(e.g., Fisco Bcos), exploring multitask learning approaches,
and investigating other ways of enhancing the interpretability of our framework.
These potential directions for future research could further enhance the perfor-
mance and practicality of our framework and contribute to the advancement of
smart contract security.

IntelliCon: A Confidence-Based Analysis Framework 57

5 Related Work

In this section, we review the existing methods for vulnerability detection in
Ethereum smart contracts.

5.1 Traditional Detection Methods

Traditional detection methods rely on manual or semi-automated techniques and
expert-defined rules to identify vulnerabilities in smart contracts. They can be
further divided into static analysis and dynamic analysis. Static analysis methods
analyze the source code or bytecode of smart contracts without executing them.
Tikhomirov et al. [14] presents SmartCheck, which works by translating Solid-
ity source code into an XML-based intermediate representation and checking it
against XPath patterns. Feist et al. [15] describe Slither, a static analysis frame-
work that converts Solidity smart contracts into an intermediate representation
called SlithIR, which allows for the application of commonly used program anal-
ysis techniques. However, they may suffer from high false positives or negatives
due to the complexity and ambiguity of smart contract semantics. Moreover,
they may not be able to handle dynamic features such as external calls or state
changes.

Dynamic analysis methods execute smart contracts on a simulated or real
blockchain environment and monitor their runtime behaviors. They can detect
vulnerabilities that depend on specific inputs by generating test cases or observ-
ing transactions. Luu et al. [16] firstly performed dynamic symbol execution
tools called Oyente to analyze vulnerability. Still, these methods may require
more time and resources to execute smart contracts and collect data and not
cover all possible execution paths and inputs of smart contracts.

Fuzzing methods are a special type of dynamic analysis that generates
mutated inputs randomly for smart contracts and observe their exceptions.
They can detect vulnerabilities that cause abnormal behaviors such as crashes
or reverts by applying coverage-guided heuristics or evolutionary algorithms.
Jiang et al. [17] presents ContractFuzzer to test Ethereum smart contracts for
security vulnerabilities. The fuzzer generates fuzzing inputs, defines test oracles,
instruments the EVM to log runtime behaviors, and analyzes these logs to report
vulnerabilities. Fuzzing methods may be ineffective and impractical due to the
high cost of executing smart contracts on a blockchain network and depend on
the availability and accuracy of environments.

5.2 Machine Learning-Based Detection Methods

Machine learning-based detection methods leverage data-driven techniques to
identify vulnerabilities in smart contracts. Zhuang et al. [18] propose using graph
neural networks (GNNs) to represent the structure of a smart contract function
and use a degree-free graph convolutional neural network (DR-GCN) and a tem-
poral message propagation network (TMP) to learn from the normalized graphs
for vulnerability detection. Lutz et al. [19] introduce ESCORT, a deep neural

58 Y. Shen et al.

network-based multi-output method that supports lightweight transfer learning
for new security vulnerabilities.

NLP-based methods can leverage pre-trained models on large-scale code cor-
pora to improve the performance and generalization ability of vulnerability
detection. For instance, Sun et al. [20] propose a new framework called ASS-
Bert for smart contract vulnerability detection that leverages active and semi-
supervised learning with a bidirectional encoder representation from transform-
ers network.

However, due to most of the large datasets being annotated by multiple
traditional vulnerability detection tools with limited accuracy [7], training on
them will make the model a simulator for these tools, and the noisy labels and
false positives of these tools will also affect the performance of the model. Fur-
thermore, they may not be able to explain their predictions due to the lack of
interpretability of neural networks.

6 Conclusion

In this paper, We provide a novel approach, IntelliCon, for detecting smart
contract vulnerability by utilizing CodeT5 and confident learning techniques.
Our work represents the first attempt to utilize confident learning for cleaning
noisy labels to enhance detection. Moreover, we interpret specific code gadgets
that cause vulnerabilities by traversing functions extracted via the AST analysis
method for each vulnerability type. Experimental results demonstrated that over
95.9% micro-F1 score and 92.9% macro-F1 score could be achieved in detecting
7 types of vulnerabilities in smart contracts, outperforming the baseline models.
Our work contributes to the advancement of smart contract security and provides
valuable insights for developers and auditors in the blockchain industry.

References

1. Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system. Decentralized busi-
ness review, pp. 21260–21268 (2008)

2. Zhang, S., Li, W., Li, X., Liu, B.: AuthROS: secure data sharing among robot
operating systems based on Ethereum. In: Proceedings of the QRS (2022)

3. Slowmist: Blockchain security and aml analysis annual report (2023). https://www.
slowmist.com/report/2022-Blockchain-Security-and-AML-Analysis-Annual-
Report(EN).pdf

4. Li, W., Jiuyang, B., Li, X., Peng, H., Niu, Y., Zhang, Y.: A survey of DeFi security:
challenges and opportunities. J. King Saud Univ. Comput. Inf. Sci 34(10), 10378–
10404 (2022)

5. Li, X., Chen, T., Luo, X., Yu, J.: Characterizing erasable accounts in Ethereum.
In: Susilo, W., Deng, R.H., Guo, F., Li, Y., Intan, R. (eds.) ISC 2020. LNCS, vol.
12472, pp. 352–371. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
62974-8 20

6. Sürücü, O., et al.: A survey on ethereum smart contract vulnerability detection
using machine learning. Disrupt. Technol. Inf. Sci. VI 12117, 110–121 (2022)

https://www.slowmist.com/report/2022-Blockchain-Security-and-AML-Analysis-Annual-Report(EN).pdf
https://www.slowmist.com/report/2022-Blockchain-Security-and-AML-Analysis-Annual-Report(EN).pdf
https://www.slowmist.com/report/2022-Blockchain-Security-and-AML-Analysis-Annual-Report(EN).pdf
https://doi.org/10.1007/978-3-030-62974-8_20
https://doi.org/10.1007/978-3-030-62974-8_20

IntelliCon: A Confidence-Based Analysis Framework 59

7. Durieux, T., Ferreira, J.F.: Empirical review of automated analysis tools on 47,587
Ethereum smart contracts. In: Proceedings of the ICSE, pp. 530–541 (2020)

8. Li, W., Bu, J., Li, X., Chen, X.: Security analysis of DeFi: vulnerabilities, attacks
and advances. In: Proceedings of the Blockchain, pp. 488–493 (2022)

9. Li, X., Chen, T., Luo, X., Wang, C.: CLUE: towards discovering locked cryptocur-
rencies in Ethereum. In: Proceedings of the SAC, pp. 1584–1587 (2021)

10. Wang, Y., Wang, W., Joty, S., Hoi, S.C.: Codet 5: identifier-aware unified pre-
trained encoder-decoder models for code understanding and generation. In: Pro-
ceedings of the EMNLP, pp. 8696–8708 (2021)

11. Wood, G., et al.: Ethereum: a secure decentralised generalised transaction ledger.
Ethereum Proj. Yellow Pap. 151(14), 1–32 (2014)

12. Northcutt, C., Jiang, L., Chuang, I.: Confident learning: estimating uncertainty in
dataset labels. J. Artif. Intell. Res. 70, 1373–1411 (2021)

13. Ferreira, J.F., Cruz, P., Durieux, T.: Smartbugs: a framework to analyze solidity
smart contracts. In: Proceedings of the ASE, pp. 1349–1352 (2021)

14. Tikhomirov, S., Voskresenskaya, E.: Smartcheck: static analysis of ethereum smart
contracts. In: Proceedings of the ICSE, pp. 9–16 (2018)

15. Feist, J., Grieco, G., Groce, A.: Slither: a static analysis framework for smart
contracts. In: Proceedings of the WETSEB, pp. 8–15 (2019)

16. Luu, L., Chu, D.H., Olickel, H.: Making smart contracts smarter. In: Proceedings
of the CCS, pp. 254–269 (2016)

17. Jiang, B., Liu, Y., Chan, W.K.: Contractfuzzer: fuzzing smart contracts for vul-
nerability detection. In: Proceedings of the ASE, pp. 259–269 (2018)

18. Zhuang, Y., Liu, Z., Qian, P.: Smart contract vulnerability detection using graph
neural network. In: Proceedings of the IJCAI, pp. 3283–3290 (2020)

19. Sendner, C., Chen, H., Fereidooni, H.: Smarter contracts: detecting vulnerabilities
in smart contracts with deep transfer learning. In: Proceedings of the NDSS, pp.
1–18 (2023)

20. Sun, X., Liangqiong, T., Zhang, J., Cai, J., Li, B., Wang, Yu.: ASSBert: active
and semi-supervised bert for smart contract vulnerability detection. J. Inf. Secur.
Appl. 73, 103423 (2023)

	IntelliCon: Confidence-Based Approach for Fine-Grained Vulnerability Analysis in Smart Contracts
	1 Introduction
	2 Background
	2.1 Ethereum Smart Contract Security Threats
	2.2 Pre-trained Language Model
	2.3 Text Classification Task

	3 IntelliCon
	3.1 Overview
	3.2 Model Details
	3.3 Confident Learning
	3.4 Vulnerability Detection

	4 Experiment
	4.1 Experimental Settings
	4.2 Model Tricks
	4.3 Data Pruning with Confident Learning
	4.4 Evaluation
	4.5 Discussion

	5 Related Work
	5.1 Traditional Detection Methods
	5.2 Machine Learning-Based Detection Methods

	6 Conclusion
	References

