2206.11821v2 [cs.CR] 8 Aug 2022

arXiv

A Survey of DeFi Security: Challenges and Opportunities

Wenkai Li, Jiuyang Bu, Xiaoqi Li*, Hongli Peng, Yuanzheng Niu and Yuqing Zhang

School of Cyberspace Security, Hainan University, Renmin Avenue 58, Haikou, 570228, China

ARTICLE INFO

Keywords:

Blockchain
Cryptocurrency
Decentralized Finance
Smart Contract

ABSTRACT

DeFi, or Decentralized Finance, is based on a distributed ledger called blockchain technology. Us-
ing blockchain, DeFi may customize the execution of predetermined operations between parties. The
DeFi system use blockchain technology to execute user transactions, such as lending and exchanging.
The total value locked in DeFi decreased from $200 billion in April 2022 to $80 billion in July 2022,
indicating that security in this area remained problematic. In this paper, we address the deficiency in
DeFi security studies. To our best knowledge, our paper is the first to make a systematic analysis of
DeFi security. First, we summarize the DeFi-related vulnerabilities in each blockchain layer. Addi-
tionally, application-level vulnerabilities are also analyzed. Then we classify and analyze real-world
DeFi attacks based on the principles that correlate to the vulnerabilities. In addition, we collect op-
timization strategies from the data, network, consensus, smart contract, and application layers. And
then, we describe the weaknesses and technical approaches they address. On the basis of this com-
prehensive analysis, we summarize several challenges and possible future directions in DeFi to offer
ideas for further research.

1. Introduction

The blockchain concept originated from the research of
Haber and Stornetta (1990) added timestamps to text, au-
dio, and video files in digital form to guarantee their authen-
ticity. When Nakamoto (2008) refined the blockchain con-
cept for the first time, blockchain had begun to serve as a
decentralized network with numerous properties, attracting
considerable research. At the same time, the application of
cryptography principles (Nakamoto, 2008) and the promo-
tion of consensus mechanisms (Jakobsson and Juels, 1999)
have enabled digital currencies with blockchain as the core
to allow mutually untrusting parties to complete transactions
securely.

Suppose blockchain-based Bitcoin transactions represent
the blockchain 1.0 era. In that case, the combination of smart
contracts and blockchain signifies the era of blockchain 2.0.
Szabo (1996) first introduced the concept of the smart con-
tract, which denoted a promise or agreement in digital form.
Buterin et al. (2014) proposed Ethereum, which updates and
verifies blockchain data via the state. Ethereum is currently
a significant platform for smart contracts and decentralized
applications.

In addition, Decentralized Finance (DeFi) is a decentral-
ized application that uses blockchain in the financial domain
to implement pre-defined financial protocols. Blockchain
technology is widely used in various fields, such as edu-
cation, health, and finance. Moreover, because Ethereum
blockchain technology integrated with finance better during
the Bitcoin period, DeFi technology in the financial field is
gaining more attention.

Moreover, the blockchain serves as the foundation of the
DeFi application and enables transactions on DeFi to be com-
pleted securely. Blockchain’s consensus mechanism ensures
the integrity of DeFi transactions. The consensus mecha-

Email: csxqli@gmail.com
*Corresponding author.

;J

J

Oracl P2p Consensus Contract
racle network layer layer
- Market : Market i DeFi
manipulation | mechanism ;| service
| |
@ : 8 Front-running | Arbitrage I Exchange
. - : - l L. -d-
o ol ending
Data Back-running ! Liquidation | &Borrowing

Figure 1: Overview of Research Ideas and Analysis Paths on
DeFi Security.

nism selects the ledger nodes for the blockchain. The nodes
with bookkeeping rights incorporate the DeFi application’s
transactions into a new block. The proper execution of the
financial logic of the DeFi application relies on smart con-
tracts (Jensen et al., 2021). The smart contract isolates from
the outside world and cannot be modified once deployed on
the blockchain. In detail, to get reliable real-world asset
price information, DeFi introduces an oracle (Werner et al.,
2021), which is a system to provide real-world financial asset
price information.

With the rapid development of DeFi, it can be divided
into stablecoin, Decentralized Exchange (DEX), cryptocur-
rency market, and insurance. Additionally, it had locked in
$200 billion until April 2022 (Shaman et al., 2022). How-
ever, the value locked up in the entire DeFi dropped by around
$85 billion in July 2022, causing us to ponder the security of
DeFi.

While some studies about the risk of DeFi in Table 1,
they paid more attention to financial issues. Werner et al.
(2021) classified attacks according to risk categories from an
economic perspective. Qin et al. (2021b) systematically and
quantitatively compared various lending systems and mea-

First Author et al.: Preprint submitted to Elsevier

Page 1 of 26

A Survey of DeFi Security: Challenges and Opportunities

Table 1

Comparison of Our Study and Other DeFi Security Related Literature.
Reference Contributions Date Categories
Jensen et al. It focuses on the analysis of financial services. It classifies the risks of April Financial Risk
(2021) users, liquidity providers, arbitrageurs and application designers separately. 2021
Werner et al. It focuses on the economic aspects and classifies the financial risks September Financial Risk
(2021) encountered by DeFi. And it analyzes the DeFi protocol and ecosystem. 2021
Qin et al. It first introduces the breadth of the lending market (a DeFi service). It November Financial Risk
(2021b) quantifies the instability of lending protocols. 2021
Gudgeon et al. It introduces a new type of Flash Loan attack and demonstrates the June Technical Risk
(2020) weaknesses and price fluctuations of the DeFi protocol. 2020
Qin et al. It compares the differences between traditional CeFi and DeFi, including June Financial Risk
(2021a) legal, economic, and security. 2021
Amler et al. It classifies DeFi services through the economics dimension, highlighting the | September Financial Risk
(2021) advantages of DeFi compared to traditional finance. 2021
Bartoletti et al. It formalizes DeFi theory in order to analyze various DeFi incentive September Technical
(2021) mechanisms and design principles. 2021 Optimization
Liu et al. Markov Chain and volatility prediction risk management are proposed. Loss October Technical
(2020) distribution reduces mortgage rates, and VaR calculates external risks. 2020 Optimization
Wang et al. It proposes a DeFi attack detection system that collects and analyzes March Technical
(2021a) transactions using symbol execution and transaction monitoring. 2021 Optimization
Bekemeier It presents the first systematic risk and is the first empirical guide to December Technical and
(2021) stylized facts both at the technical level and economic level. 2021 Financial Risk

It is the first to provide a systematic summary of DeFi security incidents and Systematic
Our study . o . . . E— .
systematically analyze the vulnerabilities. We also provide future directions. Review

sured the risks that participants may encounter. Gudgeon
et al. (2020) described the design flaws in lending protocols
and DeFi losses due to price volatility. Qinetal. (2021a) sys-
tematically compared Centralized Finance (CeFi) and DeFi,

including legal, economic, and market. Bartoletti et al. (2021)

formalized the DeFi theory, which was used to understand
systematically and analyze the incentives in DeFi to balance
interest rates and prices. Other studies proposed by Jensen
et al. (2021) and Amler et al. (2021) were used to analyze
the risk of assets in DeFi on Ethereum.

In addition to the research of financial risks in DeFi, op-
timization schemes were also widely studied, as shown in
Table 1. Liu et al. (2020) used a mathematical-statistical ap-
proach to the market for four types of assets and clearing to
construct MovER, a framework for controlling the risk of the
system. Wang et al. (2021a) proposed Blockeye, which con-
structed state dependencies from smart contracts and used
the collected transactions to analyze whether it is subject to
a DeFi attack. Even though there are some optimized solu-
tions to vulnerabilities, attacks keep appearing, such as the
Ronin Bridge incident (Network, 2022).

Similar work to ours was proposed by Bekemeier (2021),
it discussed systemic risk, both at the technical level of the
blockchain and the economic level and provided experience
analysis. The difference is that our work is more compre-
hensive. Our work in this paper systematically summarizes
vulnerabilities at all technical levels, following the analyti-
cal path shown in Figure 1. In addition, we analyze the at-
tack events caused by the vulnerabilities. Most importantly,
we also summarize the most state-of-the-art optimizations at

each layer. Finally, we conclude with some challenges and
possible future directions.
The main contributions of this paper are as follows:

(1) To the best of our knowledge, we conducted the first
systematic examination of the security issues of the
DeFi ecosystem built on blockchain.

(i) We systematically summarize the vulnerabilities of the
Ethereum-based DeFi system, investigate real-world
attack events related to DeFi and classify them accord-
ing to their vulnerability principles.

(iii) We survey the security optimizations in DeFi from the
system level and conclude the challenges to suggest
future research directions in this area.

The rest of the paper is structured as follows. Section 2
presents the background of the paper. In Section 3, we ex-
amine some vulnerabilities in DeFi, and in Section 4, we an-
alyze real-world attacks. Section 5 provides several security
optimization strategies, while Section 6 highlights DeFi’s
challenges and future directions. Finally, Section 7 concludes
the paper.

2. Background

2.1. Ethereum

Ethereum is a public blockchain system initialized using
the Proof-of-Work (PoW) consensus mechanism, in which
miners fight for control of blocks using computing power in

First Author et al.: Preprint submitted to Elsevier

Page 2 of 26

A Survey of DeFi Security: Challenges and Opportunities

exchange for incentives (Li et al., 2020c). However, it has
subsequently shifted to the Proof-of-Stake (PoS) algorithm,
which is based on the quantity and age of stakes held (Wahab
and Mehmood, 2018). It first uses the Turing-complete pro-
gramming language Solidity, Vyper and others to develop
smart contracts (Chen et al., 2020c; Li et al., 2020b). Any-
one can deploy Decentralized Applications (DAPPs) on the
Ethereum chain that can communicate with others. The most
popular application in the financial field is DeFi, which pro-
vides a wide range of financial services.

2.1.1. Layers of Dapp on Ethereum
Dapps, like traditional software architectures, may be
separated into six layers as follows (Duan et al., 2022):

(i) The data layer handles off-chain data before passing it
on to the network layer.

(i) The network layer is peer-to-peer, assuring network
node autonomy.

(iii) The consensus layer guarantees that miners wrap net-
work layer requests into blocks.

(iv) The incentive and consensus layers are interrelated,
and the incentive layer ensures that miners do not be-
have maliciously.

(v) The smart contract layer connects the consensus with
application layers and exchanges data between them.

(vi) The application layer binds the information from the
smart contract layer and shows it to the user after pro-
cessing.

2.1.2. Transaction Process on Ethereum

When a user interacts with the applications and begins
a transaction request using the interfaces provided by the
smart contract, the transaction request broadcasts to all nodes
on the P2P network chain. When the miner gets the re-
quest, it selects and packages the transaction into blocks.
The miner adds blocks to the chain using the consensus algo-
rithm and synchronizes them with all nodes on the network.
Simultaneously, the smart contract changes the state vari-
ables depending on transaction data and visualizes them in
the application.

2.1.3. Geth

Go-Ethereum (Geth) is an official Ethereum client im-
plemented in the go programming language (Adam et al.,
2013). It includes instructions for several tasks, such as cre-
ating an Ethereum private chain and interacting with the net-
work environment.

2.1.4. Gas

To avoid the overuse of network resources, all transac-
tions on Ethereum are paid a cost called gas (Chen et al.,
2017a), and the transaction fee equals the amounts of gas
multiplied by gasPrice (Chen et al., 2020b). The user who
proposes transactions sets the gasPrice, and miners with high
computing resources would conduct the transaction earlier if
the gasPrice is high. There is also a concept called gaslimit,
which is used to limit the maximum amount of gas that can

be used for a transaction (Chen et al., 2017b). It means that
the maximum charge for a transaction is gaslimit multiplied
by gasPrice.

2.1.5. Consensus Mechanism of Ethereum

The fundamental technology of blockchain is the con-
sensus mechanism, which ensures the blockchain’s secure,
stable, and efficient operation. At the same time, the consen-
sus mechanism enables the "mistrustful" parties on Ethereum
to complete the verification and confirmation of transactions.
Researchers (Lashkari and Musilek, 2021) are continuously
improving various consensus mechanisms such as PoW, PoS,
Delegated-Proof-of-Stake (DPoS), and Practical Byzantine
Fault Tolerance (PBFT).

Ethereum still uses PoW as its consensus mechanism.
Nakamoto (2008) proposed poW to prevent double-spending
in cryptocurrencies. The core idea of PoW is to compete
among nodes for the bookkeeping rights and rewards of each
block through their computing power (Mingxiao etal., 2017).
All miner nodes in the network use the information in the
previous block, such as previous block hash, timestamp, and
nonce, to determine the next block. In PoW, miner nodes
find the hash value by continuously trying random number
nonce, which is difficult to calculate but simple to verify.

By PoW’s high consumption of resources, so Ethereum
intends to use PoS as the new consensus mechanism. In
2011, quantum mechanical proposed POS, whose core idea
is that the greater the ownership of a node to a specific amount
of cryptocurrency, the greater the equity of the node (Mingx-
iao et al., 2017). In PoS, it filters nodes by calculating the
number of currencies in the nodes as a percentage of the to-
tal currencies and the time of holding currencies. This ap-
proach selects nodes first and then performs arithmetic oper-
ations, which means that many computational resources are
not wasted.

2.1.6. Maximal Extractable Value (MEY)

The Ethereum consensus shift caused several definitions
to be updated. Initially, MEV was the miner extractable
value, but now the maximum extractable value makes more
sense.

Miner extractable value refers to the profit miners make
by performing a series of operations on the blocks they mine
(Qin et al., 2022). For example, miners reorder transactions
to optimize the initial ordering of transactions and earn addi-
tional Ordering Optimization (OO) fees (Daian et al., 2020).
And the phenomenon that miners sell priority in blocks to
make users keep raising the cost of gas is called Priority Gas
Auctions (PGA).

Maximal Extractable Value is the maximum value that
the validator V' can extract by reordering, inserting, or not
addition, we assume that the i)éllance in V before the transac-
tion is b(s) and b(s’) is after the transaction. So the value ob-
tained by sequential execution EV (V,T; _ ;) equals b(s") —

,,,,,

array. Thus the maximal extractable value M EV can be de-

First Author et al.: Preprint submitted to Elsevier

Page 3 of 26

A Survey of DeFi Security: Challenges and Opportunities

.....

2.2. DeFi

2.2.1. Development of DeFi

The introduction of blockchain technology (Nakamoto,
2008) has changed the traditional financial ecosystem. With
the advent of Ethereum, smart contracts became the basis
for the development and implementation of DeFi. Since the
landing of MakerDAO in 2014 which is the first Ethereum-
based DeFi project, several DeFi protocols have emerged
to implement functions of traditional CeFi, such as lending
platforms, exchanges, derivatives, and margin trading sys-
tems (Wang et al., 2022). As liquidity mining mentioned in
2020, DeFi was pushed into high gear with the emergence
of decentralized exchanges such as Compound, which are
entirely managed by smart contracts. Money Legos brings
unlimited creativity to DeFi products. It means that a new
financial product can be realized by combining the under-
lying DeFi protocols (Popescu et al., 2020). In 2022, regu-
lated Decentralized Finance (rDeFi) becomes the new trend
in DeFi development (Coinchange, 2022).

2.2.2. DeFi Service

As seen in Figure 1, DeFi applications can be made up
of DeFi services, also known as protocols, such as exchange,
lending, and asset operation. Blockchain will wait for assets
or data to be processed through protocols before uploading
them to the application layer, which is the market (Schir,
2021). The DEX serves as a forum for asset suppliers and
buyers to engage, it can separate into two types: central-
ized order system and Automated Market Maker (AMM)
(Zhou et al., 2021b). The former is comparable to a regu-
lar exchange in that customers produce trade orders follow-
ing transactions start. The latter is accomplished quickly by
initiating a transaction using a previously constructed asset
price algorithm.

2.2.3. Market Mechanism

In addition to technological issues, DeFi has an economic
mode of operation, which is the market mechanism. Users
can control and alter numerous assets using the DeFi service
normally. However, attackers can benefit by manipulating
the asset through market-based strategies at the economic
level.

3. Analysis of Vulnerabilities

From the proposal of Ethereum to 2022, various vulnera-
bilities have emerged to promote the ecological development
of DAPPs. Therefore, studying the vulnerabilities related to
DeFi helps understand the defense methods of attacks. To
summarize threats in DeFi, we focus on data, consensus,
contract, and application layers.

3.1. Data Security Vulnerabilities

For the data layer, if attackers change the data under the
chain during the uploading process to the chain, it will re-
sult in irreversible mistakes due to the immutability of the

blockchain. Figure 2 shows that it could encounter oracle
mechanism vulnerability and inappropriate key management.

Hareware Wallet I

QR Code Wallet I

Technical
Problems |

Oracle

Mechanism =—{ Social
Vulnerability Problems I

Simple Wallet I
Local File Multi-Sig Wallet I
St |

T Forwarder Wallet I

Management Physical _|
S Storage Controlled Wallet
S r Update Wallet
Contract I
Smart Wallet I

Data Security
Vulnerabilities

Inappropriate
Key —

Bug Classification

Figure 2: Classification of Data Security Vulnerabilities.

3.1.1. Oracle Mechanism Vulnerability

The oracle is an automated service mechanism that al-
lows the system to obtain the off-chain asset price data as
input (Werner et al., 2021). And smart contracts rely on
the exchange rates of prices provided by oracle for proper
operation. However, as Figure 1 shows, the risk to oracle
grows drastically when a single point of failure occurs. For
example, over 3 million SETH were arbitrated due to the ora-
cle errors in SYNTHETIX, a protocol that converts entity into
synthetic (Synthetix, 2019). Oracle risks can be divided into
technical and social problems.

Technical oracle problems may be defined as a process
of passing data with three key elements:

(i) How to collect all the data accurately?
(i) How to process the data with as few errors as possible?
(iii) How to upload the processed data to smart contracts?

Furthermore, the current oracle form may be central-
ized and distributed. Centralized oracle uses trusted third
parties to collect, process, and transfer data to smart con-
tracts. Distributed oracle consists of numerous nodes that
take data from multi-sources and process it using an algo-
rithm, such as a consensus (Kumar et al., 2020) or weighted
voting method (Angeris and Chitra, 2020). Finally, the ora-
cle system assesses the chain information.

There are not only technical problems but also social
problems in oracle (Caldarelli and Ellul, 2021; Egberts, 2017).
Assuming such a game where there exists an Oracle O,. The
O; picks the off-chain data and processesitas D, = (d,, ..., d ;).
The contract S; = (fiy, ..., fi) uses D, for transactions T'x;,
where f;; is the i,;, function in the contract .S;. If an attacker
a; pays ¢ to modify d; in D,, and obtains benefits b;;. When
the cost ¢ by the attacker is less than the benefits b;;, the
attacker gets a profit that would be attractive to other attack-
ers. While the ¢ cannot be measured directly from technical
methods, it requires analysis of specific social situations, so
the oracle problem is controversial in terms of social issues.

3.1.2. Inappropriate Key Management
In the DeFi ecosystem, wallets are used to manage pri-
vate keys, and asset authentication is based on keys in most

First Author et al.: Preprint submitted to Elsevier

Page 4 of 26

A Survey of DeFi Security: Challenges and Opportunities

Table 2

Comparison of Different Key Storage Methods on Ethereum.
Wallets Descriptions Features

Flex | Sec | Sca | TP | TxC

Local Storage Keys are stored centrally in the file system by default - - - - -
Hardware Wallet Hardware devices can isolate external networks and transport operations X v X X -
QR Code Wallet QR code generated from the address and scanned to obtain the address X v X X -
Simple Wallet It can simply handle cryptocurrencies and tokens for raw transactions v - v - v
Multi-Sig Wallet The transaction process requires multiple owners to sign to ensure users’ security X v v v v
Forwarder Wallets Forwarding assets to a master wallet and users only need to preserve the subkey v v v X v
Controlled Wallets | The third party keeps the key and anyone who uses the key needs authorization X v X X v
Update Wallets Users can customize the update by selecting some parts to be updated v v v X v
Smart Wallets Wallets with enhanced functionality that achieve expansion of normal functions v X v X v

cases. However, similar to Bitcoin, the DeFi system suffers
from the problem of improper key management. Existing
key management methods, such as physical storage (Shbair
et al., 2021; Dabrowski et al., 2021), offline wallets (Khan
et al., 2019; He et al., 2018), and password-derived wal-
lets (Kaliski, 2000), have some drawbacks. In Table 2, we
summarize nine forms of wallets, where local storage is the
initial form of local file storage, hardware wallets and QR
code wallets both belong to physical storage wallets. The re-
mains belong to smart contract wallets. Moreover, Flex in
Table 2 is the Flexibility, above the Local Storage is a v/,
and vice versa is a X. The same applies to Sec, Sca, TP, and
TxC, representing Security, Scalability, Transparency, and
Transaction Costs, respectively.

In Ethereum, users can access the Ethereum chain by us-
ing Geth. When a user creates an account a;, the client gener-
ates a file to be stored locally, which contains the unique key
key; associated with the account a;. Before the account ini-
tiates a transaction 7'x; or mining, the client reads the key;
in the file. However, anyone without restricted access can
read the file and even falsify (key;, ..., key;) for profit.

There are three types of wallets, software, hardware, and
paper, depending on the form in which they exist (Suratkar
et al., 2020). Hardware and paper-based storage, which are
physical storage, are more secure because they store keys in
a way that isolates them from multi-user interaction. Never-
theless, it also has the weaknesses of poor scalability (Ara-
pinis et al., 2019) and the inability to have a single point of
failure caused by the architecture design (Dabrowski et al.,
2021).

Di Angelo and Salzer (2020) divided smart contract wal-
lets into six types. They restrict the direct access to assets
and provide some Application Binary Interfaces (APIs) for
manipulating data.

o Simple Wallet: It is the initial form of wallet, offering
simply raw transaction capability and storing all keys
in files. When a malicious parity obtains file system
permissions, keys can be read or even manipulated.

e Multi-signature Wallet: It requires the co-signature
of many owners for increased protection. The com-
bination of many signatures dilutes the individual’s

influence, providing decentralization. And the public
multiple signature combination could enhance trans-
parency.

e Forwarder Wallet: It adds forwarding operations to
the signing process, such as password-derived wallets,
which allow users to customize the master key and
then derive sub-keys from controlling the asset. The
forwarding operation faces a balance between trans-
parency and security. If the derivation algorithm is
publicly available, attackers who got the master key
in some ways will reproduce the derivation process to
obtain all sub-keys.

e Controlled Wallet: The custodial wallet is an exam-
ple of a controlled wallet since it keeps ownership of
the account and grants access to users. It offers some
protection by centralized management, but the non-
transparent action also tests managers’ credibility.

e Update Wallet: Update wallets permit users to mod-
ify updates depending on features, allowing for greater
flexibility in wallet operation. However, compatibility
across many versions might result in worse security.

e Smart Wallet: Smart wallets include some sophisti-
cated features, such as key recovery. As a result, the
smart contract enables wallets to execute a range of
services in addition to transferring money, but it adds
to the dangers involved with smart contracts in 3.3.

3.2. Consensus Mechanism Vulnerabilities
Blockchain, such as Ethereum, is consensus-based. Up
to now, many significant works have already been done in
design, testing, auditing, and maintenance. So there aren’t
many consensus flaws, but we gather the consensus bugs
that occurred in Geth according to (NVD, 2022; Yang et al.,
2021; Luu et al., 2015) in Table 3 and we classify them from
three aspects in Figure 3. There are four severity categories,
with low suggesting that the developer resolved before they
occur. The middle level was deployed to the test network be-
fore discovered, while the High was in the main chain. The

First Author et al.: Preprint submitted to Elsevier

Page 5 of 26

A Survey of DeFi Security: Challenges and Opportunities

Table 3

Summarization of Consensus Vulnerabilities on Geth that have Endangered DeFi.
Brief Explanation Descriptions Date Severity
Journaling Mechanism Geth can't restore a deleted empty account due to out-of-gas November 2016 High
EVM Stack Underflow SWAP, DUP, and BALANCE underflow the EVM stack February 2017 High
Stack Elements In a static environment with fewer than three stack elements October 2017 Low
Encryption Algorithm The elliptic curve algorithm was not fully validated February 2018 High
Timestamp Overflow Timestamp, state variables in blocks, overflow March 2019 High
Shallow Copy Pre-compile contract, making Geth inconsistent with memory July 2020 High
Ether Shift Transfering the balance of the deleted account to the new account August 2020 High
Certain Sequences Certain transaction sequences can lead to the failure of consensus December 2020 Middle
Incorrect Requirements Failure to properly authorize timestamp leads to double spending February 2021 High
Memory Corruption RETURNDATA corruption due to data replication, resulting in forking August 2021 High
Denial of Service (DoS) | Combination of short-term restructuring and delayed consensus decision | October 2021 Critical
Bignum Overflow Some large values in consensus specification overflow leads to a fork April 2022 High

critical one implies that the vulnerability is widely available
and has a significant impact on the integrity of the network.
Certain malicious behaviors utilize consensus rules to af-
fect the sequences of transactions. There are a variety of at-
tacks combined with MEV, such as flash loans (Qin et al.,
2021c; Zhou et al., 2021a), sandwich attacks (Zhou et al.,
2021b; Qin et al., 2022), and forking attacks (Daian et al.,
2020). As Figure 3 depicted, we classify this part into three
segments: 1) Transaction Order Vulnerability; 2) Forking
Vulnerability; 3) State Management Vulnerability.

Consensus Mechanism
Vulnerabilities

e — T L ___________ ~a _"""":
!'| Transaction Order Forking State Management [|
i Vulnerability Vulnerability Vulnerability i
| _BugClassification J

Figure 3: Classification of Consensus Mechanism Vulnerabili-
ties

3.2.1. Transaction Order Vulnerability

Transaction order vulnerability describes that an attacker
alters the initial sequence of transactions by leveraging the
miner’s desire for profit. The sandwich attack is a typical
example. The attacker predicts that the victim will buy asset
A, and pays a higher gas fee to acquire it before the victim
at a lower price. And then, they sell A at a higher price for
arbitrage since the victim’s purchase boosts the price (Zhou
et al., 2021b).

3.2.2. Forking Vulnerability
Forking events in DeFi are generally associated with trans-

action fee-based forks and time-bandit attacks (Daian et al.,
2020). Mining revenue incentivizes miners to perform hon-
estly, but the OO fee motivates them to reorder transactions
in the block, enhancing the income. Most bugs contain fork-
ing vulnerabilities in Table 3, for example, memory corrup-
tion, incorrect requirements, shallow copy, and certain se-
quences.

3.2.3. State Management Vulnerability

Transactions in Ethereum are based on updating states
between blocks (Wood et al., 2014). According to the con-
sensus rules in Ethereum, the confirmation between the old
and new blocks needs to be completed within 12 minutes.
Therefore, if attackers complete the extraction of the state
variables within the block, then they can attack the trans-
action within the specified time. For example, timestamp
overflow and incorrect requirements are in Table 3. The for-
mer is because the timestamp exceeds the representation of
uint64, resulting in a hash error in the block (Yang et al.,
2021). The latter is that the timestamp in a block gets the
permission mistake, which means the block to be refused by
the chain permanently, causing a chain fork and the execu-
tion of a double-spending attack(NVD, 2022).

3.3. Smart Contract Vulnerabilities

There are 20 types of smart contract vulnerabilities in
Ethereum defined in (Chen et al., 2020a), of which Table
4 shows the weaknesses that attackers might use to make a
profit. We searched Common Vulnerabilities & Exposures
(CVE) and summarized over 500 vulnerabilities (CVE, 2022).
In Figure 4, we describe the classification of smart contract
vulnerabilities in this paper. And Table 4 shows that bugs
written by Solidity were categorized into several types as
detailed below:

Vulnerabilities
standard Lending Market
Transaction State v Smart Contract
Dependency Vulnerabilities
Suicidal and Greedy

Cryptocurrency
! Contracts Instability

Arithmetic Operations
Vulnerability
Unmatched ERC-20

Reentrar.lc_y Application Laye: '
Vulnerability sﬂlln:rzlibrillitig’s ' : Design Imperfection
Unchecked External
Call
Strict Balance Abusive Transaction
Bug Classification Bug Classification

Figure 4: Classification of Smart Contract and Application
Layer Vulnerabilities

First Author et al.: Preprint submitted to Elsevier

Page 6 of 26

A Survey of DeFi Security: Challenges and Opportunities

Table 4

Summarization of Smart Contract Vulnerabilities in DeFi
Categories Causes Categories Causes
Unchecked External Calls Without checking return values Reentrancy Repeated calls before completed
Unexpected Permission Check Failure to check permissions Nested Call Unrestricted call depth
DoS Under External Influence External exceptions inside loops Missing Return Denote return but no value
Unmatched ERC-20 Standard Not follow the standard Greedy Contracts Receive but do not withdraw Ethers
Strict Balance Equality Balance check failed Block Info Dependency Status in blocks leakage
Misleading Data Location Incorrect storage type Missing Interrupter No backdoor to handle crises
Transaction State Dependency Error using tx.origin Arithmetic Bugs Unmatched type to values

3.3.1. Arithmetic Operations Vulnerability

In Solidity, bugs such as integer overflow, float lack of
precision, and division by zero are common during arith-
metic data operations.

An upward overflow can occur if a memory integer ex-
ceeds the maximum range, e.g., uint256 is a default type of
integer that can express the number from 0 to 22 — 1. In
Listing 1, the function allows the owner to add tokens to the
user, but a sufficient amount on line 3 can make the balance
in balance[target] vanish.

Since Solidity lacks the float type of data structure, the
phenomenon in which the float result of an operation might
lose coins. When one integer is divided by a larger integer,
the result is always 0. For example, 1 ETH divided by 10 Eth
equals 0. Even some contracts do not restrict the operation
of division by zero, which results in code logic errors as the
result of the calculation becomes big infinitely.

1 function mintToken(address target, uint256
amount) onlyOwner{

require(target != 0x0);

balance[target] += amount;

totalSupply += amount;

Transfer (@, this, amount);

Transfer(this, target, amount);

}

~N N RN

Listing 1: Integer Overflow Instance

3.3.2. Unmatched ERC-20 Standard

Ethereum provides various APIs for developers to im-
plement certain functions, such as transferring money, but
some developers may not adhere to all standards, resulting
in problems in smart contracts. The ERC-20 standard is one
of the APIs used to manipulate cryptocurrencies, including
how to transfer tokens between addresses and access token
data (Richards et al., 2022a). When transferring tokens, for
example, transfer(), transferFrom(), and approve() will re-
turn a boolean value to indicate whether the function suc-
ceeded, and many smart contracts cause transfer mistakes
since they do not verify the return value.

3.3.3. Transaction State Dependency
Contracts should check the permissions of certain sensi-
tive invocations that use the global variable tx.origin, which

points to the address in the entire call stack where the trans-
action was originally sent (Chen et al., 2021). Assume the
Wallet contract in Listing 2 sends a transaction to the Attack
contract, and then the attack() function invokes the transfer ()
function in the Wallet contract, at which point tx.origin meets
the detection in line 6, making the success of the attack.

contract Wallet{
address public owner;
constructor() payable{
owner = msg.sender; }

O R O R S R

function transfer(address to, uint amount)
public{

6 require(tx.origin == owner);

7 (bool sent,) = to.call.value(amount);

8 require(sent,"Failed to send Ether");

9

10 3

11 contract Attack{

12 address payable public owner;

13 Wallet w;

14 constructor(Wallet wal){

15 w = Wallet(wal);

16 owner = payable(msg.sender); }

17 function attack() public{

18 w.transfer(owner,address(w).balance); }
19 3

Listing 2: Transaction Dependency Instance

3.3.4. Suicidal and Greedy Contracts

Smart contracts usually include a provision enabling the
owner to commit suicide if the contract is challenged. The
SELFDESTRUCT Operational Code (opcode) in a suicidal
contract can ignore all contract code logic, even the fallback()
function (Li et al., 2021). However, attackers utilize this fea-
ture to corrupt the logic of some contracts, which leads to
restrictions on all other operations that depend on the con-
tracts. For example, the Parity wallet was attacked by a sui-
cidal contract in 2017 (Li et al., 2020a), which resulted in a
permanent lock of all cryptocurrencies that transferred to the
wallet before the wallet maintainer fixed the vulnerability.

Similar to the suicidal contract, the greedy contract locks
up the ether, but it is alive. Greedy contracts do not have
instructions related to the withdraw and send (Nikoli¢ et al.,

First Author et al.: Preprint submitted to Elsevier

Page 7 of 26

A Survey of DeFi Security: Challenges and Opportunities

2018), such as send, and transfer, so it locks all ethers and
cannot withdraw. Therefore, making sure there are means to
get ether out before transferring it to a contract (Chen et al.,
2020a).

1 function payOut(address recipient, uint amount)
returns(bool){

2 if(msg.sender != owner || msg.value>0 ||(
payOwnerOnly && recipient != owner))

3 throw;

4 if(recipient.call.value(amount) ()){

5 payOut(recipient, amount);

6 return true;

7 Jelse{

8 return false;

9

10 3

Listing 3: Reentrant Vulnerability Instance

3.3.5. Reentrancy Vulnerability

The concept of threads does not exist in Solidity, so it
cannot execute more than two operations concurrently. This
means that when a contract initiates a call via call(), it must
wait for the completion of the call before making the next
call. However, it would be attacked if the callee contracts
change the global state during the waiting (Luu et al., 2016).
The DAO attack leverages the recursive invocations to make
the system keep cycling until internal assets run out. It ex-
its in line 4 of Listing 3 (Daian, 2016), where the original
recipient continues executing call.value() after a success-
ful transfer.

3.3.6. Unchecked External Call

The return value or the arguments of an external call can
affect the states of the code, and many contracts do not check
the return value leads to vulnerabilities. The mode of logic
used in this bug is similar to that of misuse ERC-20 stan-
dard. When a function calls code logic outside the contract,
it is equivalent to the entire runtime in a black box. At this
point, failure to check the return value of the external call
may cause the logic of the contract to break. For exam-
ple, when multiple functions are nested, and the external call
does not check the return value of the internal call in time can
go wrong (Chen et al., 2020a).

Smart contracts in the DeFi trade by using external call
functions including delegatecall(), call(), send(). More
crucially, a failed external call in these methods results in
a transaction not being rolled back, which can cause logical
effects.

3.3.7. Strict Balance Equality

Equations are commonly used in programs to make deci-
sions concerning contract logic. When an attacker employs
some methods, such as a suicide transfer ether, to alter the
state of the variables utilized in the equation, rendering the
judgments of the equation incorrect, the attack affects the
logic of the code that follows the equation. For example, in

Listing 4, when the balance in the account is 1 ether and it
passes the check in line 2. In line 3, the attacker transfers
ether into the account, causing the judgment to fail, so the
transfer in line 4 does not follow the normal logic. It is a
loophole caused by not fully checking the judgment condi-
tions of the equation.

1 function receive(address a) payable{
2 if(msg.value > 1 ether) throw;

3 if(this.balance == 1 ether){

4 a.send(1 ether);

5

6 3

Listing 4: Strict Balance Equality Instance

3.4. Application Layer Vulnerabilities

The application layer visualizes the state in the chain and
interacts directly with the user. In this paper, we focus on
DAPPs in the financial domain. DeFi applications, in gen-
eral, suffer from price manipulation attacks similar to tradi-
tional centralized financial applications. With the current
development, the problems in the application layer could
be divided into lending market imperfection, cryptocurrency
instability, design imperfection, and abusive transaction ex-
posure in Figure 4.

3.4.1. Lending Market Imperfection

When the prices in the market are out of balance, it will
result in bad debts for one of the participants in the lending
market. To get more loans, attackers can boost the cryptocur-
rency exchange rate on the oracle by modifying the real-time
price-related status before the loan is made. For example, an
attacker can gain a larger quantity of tokens by directly ma-
nipulating token prices in the asset pool or increasing the
price of collateral before lending (Wu et al., 2021), putting
the borrower