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ABSTRACT
Automatic code Summarization generation technology is widely
used in the development and maintenance of smart contracts. In
recent years, with the advent of Large Language Models (LLMs),
Gemini has received a lot of attention as the first Large Multimodal
Models (LMMs) to support multimodal input. However, it is un-
clear how LMMs can generate contract code summarization from
multimodal inputs. In this paper, we focus on evaluating Gemini
on real-world smart contracts, comparing it to the MMTrans, and
exploring how to combine multimodal prompts to generate a con-
tract code summarization. We adopt several widely used metrics
(BLEU, METEOR, and ROUGE-L) to measure the quality of the
generated summarization. Our experiments show that Gemini-Pro-
Vision achieves 21.17% and 21.05% scores for code comments gener-
ated by three-shot prompts under METEOR and ROUGE-L metrics.
The above scores are better than those generated by one-shot and
five-shot prompts.
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1 INTRODUCTION
Smart contracts[1] are automatically executed contract terms run-
ning on the Ethereum system[2]. Due to the immutability of the
blockchain system[3], it is complicated to maintain and modify the
vulnerabilities of smart contracts. smart contract code comments
can help developers understand the contract’s logic and function-
ality and are considered an effective method to reduce the risk
of smart contract vulnerabilities. However, he et al.[4]found that
misuse of uncommented code is a significant cause of 10% of vul-
nerabilities. Yang et al.[5] have observed that most smart contract
comments are unavailable. Therefore, it is necessary to use auto-
matic code summarization [6, 7] to automatically generate a natural
language summarization for the specified contract code.

In recent years, smart contract code summarization generation
technology based on natural language processing has gained wide
attention. For example, Yang et al. [5] proposed an approach that
uses multimodal learning techniques to take the SBT sequence[8]
of the contract and the graph based on the abstract syntax tree
as the input to the model. Then, MMTrans uses two encoders to
extract semantic information from the two inputs and uses a joint
encoding to generate code comments.

∗The corresponding author

Most recently, a new LMMs called Gemini[9] based on multi-
modal technology has aroused great interest in natural language
processing, compared with previous DL. Gemini-Pro-Vision sup-
ports more significant input tokens and multimodal input of pic-
tures and text, which significantly improves the performance of
processing various natural language tasks[10–12]. In addition to
processing natural language, Gemini-Pro-Vision can also process
source code. However, the current exploration of Gemini-Pro-Vision
in generating code comments is still lacking.

In this paper, we evaluate the performance of the Gemini-Pro-
Vision model for generating code summarization with one-shot,
three-shot, and five-shot prompts, and compare the generated code
summarization with the currently common SOTA. We also explore
methods to build the best prompt for multimodal inputs. Further-
more, we evaluate the performance of the Gemini-Pro-Vision model
for generating code summarization with one-shot, three-shot, and
five-shot prompts. We use three widely used metrics (i.e., Bleu, Me-
ter, Rouge-L), to measure the quality of the summarization gener-
ated by Gemini-Pro-Vision and to investigate Gemini-Pro-Vision’s
code performance summarization capabilities. We also compare the
results obtained by MMTrans[5].

In summary, we make the following contributions:

• To the best of our knowledge, we are the first to study and
analyze Gemini-Pro-Vision’s performance in smart contract
code summarization.

• We evaluated Gemini-Pro-Vision on a widely used smart
contract code summarization dataset and compared it to
other baselines.

• Based on the above research, we summarize several chal-
lenges and opportunities for Gemini-Pro-Vision code sum-
marization generation.

• We open-source our experimental data and codes on https:
//doi.org/10.6084/m9.figshare.25144871

The rest of this paper is organized as follows. Section 2 shows the
background and details of our study. Section 3 presents our study
design, including research ideas, research questions, performance
measurements, baselines, and datasets used for experiments. Sec-
tion 4 presents the analysis of our results for the research questions.
Section 5 discusses the advantages and limitations of our current
research direction. Finally, Section 6 concludes our study and shows
potential future directions.
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2 BACKGROUND
2.1 Large Multimodal Models (LMMs)
As LLMs (e.g., LLAMA[13]) technology advances, LMMs have been
inspired by many of its advantages, and LLMs provide a promising
approach to AGI. These models combine the linguistic textual rea-
soning capabilities of LLMs with the image and video capabilities
of models. As a result, LLMs can deal with more complex tasks
that require deep understanding and expressive generation across
various modalities. Open-source models such as LLAva[14] have
demonstrated their ability for tasks such as image, visual, and text
question answering.

However, the architecture of these models limits their ability to
understand and reason about a single image. Conversely, OPENFLA-
MINGO[15] models can better represent real-world scenes due to
their dedicated architecture, which allows them to handle multiple
image features compared to their predecessors.

2.2 Multimodal Prompting Methods
In the field of LLMs, a variety of prompt language methods have
been established to increase the reasoning ability of the model and
ensure the accuracy of the pre-stored results. such as zero-shot[16],
few-shot[17], and Chain-of-Thought (CoT)[18]. In recent years, the
application of prompting technology in multimodal models has
been studied to enhance the understanding and reasoning ability
of LLMs multi-image data and text data. At present, multimodality
in LMMs still has limitations in capturing the complex relationship
between visual information and text information, especially when
multiple pictures are input.

2.3 Chain-of-Thought (CoT)
The CoT methodology can significantly enhance the performance
of LLMs when dealing with complex reasoning, and this principle
holds in the realm of LLMs. For instance, Chancharik et al.[19]
introduced a Compositional Chain of Thought (CCoT) as an ap-
proach to enhance LLMs’ performance. CCoT can be divided into
two steps. The first step involves generating scene graphs with-
out relying on ground truth SG data. This is achieved using input
images and task prompts, such as visual questions. The second
step prompts the LLMs to generate a response using the image,
task cue, and the previously generated scene graph. Incorporating
scene graphs into prompts eliminates the need for fine-tuning and
prevents forgetting.

3 STUDY DESIGN
3.1 Research Questions (RQs)
We aim to answer the following questions through experimental
evaluation.

RQ1:What does the comment generated by Gemini-Pro-
Vision look like?

RQ2:How does Gemini-Pro-Vision perform with different
multimodal input prompt?

To answer RQ1, wewant to look at what the comments generated
by Gemini-Pro-Vision look like for a special code snippet. We use
Fig. 1 as an example, use the screenshot of the code in Fig. 1 as an

Figure 1: Prompt P1 for RQ1.

function removeLimits () external onlyOwner {

limitsInEffect = false;
transferDelayEnabled = false;
emit RemovedLimits ();

}

Figure 2: Code snippet of the detected contract

Figure 3: Code comment generated by Gemini-Pro-Vision.

input image, and ask Gemini-Pro-Vision to generate code comments
for the code in Fig. 1.

Fig. 3 shows what a comment generated by Gemini-Pro-Vision
for a specific code snippet looks like. It can be seen that Gemini-
Pro-Vision’s reply only focuses on the result itself and does not
include other redundant information.

RQ2 aims to evaluate the quality of comments generated by
Gemini-Pro-Vision for specific code snippets through different
Few-shot scenarios. To answer RQ2, We mainly studied the perfor-
mance of Gemini-pro-vision with one-shot, three-shot, and five-
shot prompts through experimental data.

3.2 Baseline
We compare our proposed method with the widely used MMTrans
approach, meanwhile mainly comparing the BLEU, METEOR, and
ROUGE-L scores and the length of comments. We chose the MM-
Trans approach because his research method and source code are
all open source.

3.3 Evaluation Metrics
To evaluate the performance of Geminis pro-vision against the
baselines, we decided to adopt several widely used automated eval-
uation metrics, such as BLEU, METEOR, and ROUGE-L. The above-
automated evaluation criteria can effectively measure the familiar-
ity between the generated self-powered contract code comments
and the real-world comments vocabulary and have been widely
used in smart contract code comments[5]. We show the details of
these criteria as follows.
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• BLEU. BLEU[20] (Bilingual Evaluation Understudy) is a met-
ric to evaluate machine translation, which measures the
matching degree of the corresponding n-gram content in the
standard translation by the overlap calculation of n-grams.
In this experiment, we use BLEU-4 to measure the quality of
smart contracts generated intelligently.

• METER. METER[21](Metric for Evaluation of Translation
with Explicit ORdering) is also a metric to evaluate machine
translation. However, METER first creates a sentence align-
ment between them and then calculates the similarity be-
tween the sentences.

• ROUGE-L. ROUGE-L[22] A ROUGE variant calculates the
similarity of two sentences by the length of the longest com-
mon subsequence (LCS).

3.4 DATASET
We used the so-comment dataset from the SCCSD-Solidity. After
we filtered it, we got 22,000 valuable pieces of data and conducted
experiments.

4 RESULTS

Table 1: Compare theword count ofGemini-Pro-Vision gener-
ated comments with the word count of real-world comments.

Method
SCCSD-Solidity

Median Average Maximum Minimum
Gemini-Pro-Vision (one-shot) 9 12 173 1
Gemini-Pro-Vision (three-shot) 10 14 240 1
Gemini-Pro-Vision (five-shot) 10 14 276 1

Real-world 8 9 188 2

Table 2: Comparison results between Gemini-Pro-Vision and
baselines in terms of three performance measures.

Method
SCCSD-Solidity

BLEU METEOR ROUGE-L
Gemini-Pro-Vision (one-shot) 15.38 % 20.41 % 19.99 %
Gemini-Pro-Vision (three-shot) 15.31 % 21.17 % 21.05 %
Gemini-Pro-Vision (five-shot) 14.29 % 19.48 % 20.00 %

MMTrans 34.14 % 48.56 % 43.24 %

In this section, to answer RQ2, we will compare Gemini-Pro-
Vision’s comments generated by one-shot, three-shot, and five-shot
prompts with MMTrans’s comments generated by 22000 pairs of
code-comment in the SCCSD-Solidity dataset. We consistently use
the prompt in Fig. 1 to guide Gemini-Pro-Vision to generate code
comments for the 22000 code fragments in the data test collection.

Table. 1 shows the difference between the comment length gener-
ated by Gemini-Pro-Vision with one-shot, three-shot, and five-shot
prompts and the actual review length in the real world. It can be ob-
served that the median and average length of comments generated

by one-shot prompts are lower than those generated by three-shot
and five-shot prompts, which are only 9 words and 12 words respec-
tively. The maximum length of the generated annotation is only 173
words, which is far less than three-shot and five-shot prompts. Al-
though the comment length generated by Gemini-Pro-Vision with
a one-shot prompt is lower than that generated by a three-shot and
five-shot, there is still a certain gap between Gemini-Pro-Vision
and real-world on average, but the gap is small in the median

Table. 2 shows the overall performance of Gemini-Pro-Vision in
one-shot, three-shot, and five-shot compared with MMTrans. It can
be observed from the table that Gemini-Pro-Vision has the highest
scores for METEOR and ROUGE-L with three-shot and five-shot
prompts, while the BLEU score is slightly worse than that of one-
shot. In comparison with MMTrans, it is evident that MMTrans
significantly outperforms Gemini in three metrics: METEOR, BLEU,
and ROUGE-L.

Fig. 4 shows the score breakdown of the comments generated by
Gemini-Pro-Vision on the SCCSD-Solidity dataset with a one-shot,
three-shot, and five-shot prompts. According to Fig. 4, we can see
that the median METEOR, BLEU, and ROUGE-L scores obtained by
Gemini-Pro-Visionwith one-shot, three-shot, and five-shot prompts
have little difference. The score of three-shot is higher than that of
one-shot and five-shot under METEOR and ROUGE-L.

5 DISCUSSION
In this section, we summarize the current advantages and limita-
tions of Gemini-Pro-Vision for generating code comments, as well
as future expectations.

5.1 Benefit
• More concise. The code comments produced byGemini-Pro-
Vision exhibit a more robotic style than GPT-4. They contain
fewer redundant words or phrases in the generated code
summary, allowing for immediate use without trimming. As
illustrated in Fig. 3, we prompted both Gemini-Pro-Vision
and GPT-4 to generate code comments for the provided code
example. The results, shown in Fig. 5, depict the distinct
styles of the generated code comments. Gemini-Pro-Vision’s
responses are notably concise, and its ability to incorporate
image input facilitates learning the code comment style from
boilerplate images.

• More stronger reasoning ability. Gemini-Pro-Vision can
integrate multiple pieces of image information for reasoning,
enhancing its ability to learn and understand real code com-
ment styles through visual cues. This feature contributes
to improving the accuracy and readability of the generated
code comments, bringing them closer to the authentic style
observed in real-world comments.

5.2 Limitation
• Lack of high-quality benchmark dataset. The data in the
SCCSD-Solidity dataset is outdated, spanning back 21 years.
Given the rapid evolution of Solidity in recent years, the com-
ments within SCCSD-Solidity lack coverage of the language’s
new features. Additionally, the majority of code comments
are brief and fail to offer a comprehensive overview of the

https://zenodo.org/records/4587089#.YEMmWugzYuU
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Figure 4: Performance metric scores for Comments generated by Gemini.

Figure 5: Comment generated byGemini-Pro-Vision andGPT-
4.

code’s functionalities. Hence, there is a significant need to
explore further and invest in constructing a high-quality test
dataset for Gemini-Pro-Vision, specifically focusing on code
comment generation.

• Lack of metrics. Currently, there is no suitable metric for
evaluating comments generated by LLMs such as Gemini-
Pro-Vision. Traditional metrics such as METEOR, BLEU, and
ROUGE-L, which are generally used in machine translation,
are not suitable for evaluating the quality of comments gen-
erated by Gemini-Pro-Vision.

6 CONCLUSION
In this paper, we formulate heuristic questions to investigate a suit-
able multimodal approach for assessing the quality of Gemini-Pro-
Vision-generated code comments. We compare the performance of
Gemini-Pro-Vision and MMTrans, a dedicated code summarization
model, on the SCCSD-Solidity dataset for code summarization gen-
eration. Our findings reveal that, in terms of METEOR, BLEU, and
ROUGE-L metrics, Gemini-Pro-Vision is inferior to MMTrans on
the SCCSD-Solidity dataset. However, Gemini-Pro-Vision generates
slightly higher-quality code comments with three-shot prompts
compared to one-shot and five-shot prompts. Based on our find-
ings, we outline two opportunities and adjustments for utilizing

Gemini-Pro-Vision to generate code comments. We hope that our
results and observations contribute to future work in the field of
generating code comments with Gemini-Pro-Vision.
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