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Abstract—Decentralized finance (DeFi) in Ethereum is a fi-
nancial ecosystem built on the blockchain that has locked over
200 billion USD until April 2022. All transaction information
is transparent and open when transacting through the DeFi
protocol, which has led to a series of attacks. Several studies
have attempted to optimize it from both economic and technical
perspectives. However, few works analyze the vulnerabilities and
optimizations of the entire DeFi system. In this paper, we first
systematically analyze vulnerabilities related to DeFi in Ethereum
at several levels, then we investigate real-world attacks. Finally,
we summarize the achievements of DeFi optimization and provide
some future directions.

Index Terms—Smart contract, Ethereum, Decentralized fi-
nance, DeFi

I. INTRODUCTION

The popularity of blockchain 2.0 technology has resulted in

a wide range of related services. Decentralized finance (DeFi)

is an example of a financial service built on blockchains to

provide transaction transparency. From January 2020 to April

2022, the total value locked in DeFi climbs from $600 million

to around $200 billion [1]. However, there was a sharp drop

in May 2022, which caused us to ponder the safety of DeFi.

Attacks have emerged gradually with the rapid development

of DeFi. Security incidents against DeFi continue to prolifer-

ate, and there has been a lot of research to improve the security

of blockchain [2]–[11]. B.wang et al. [4] presented BLOCK-

EYE, a real-time threat detection solution for Ethereum-based

DeFi deployments. R.cao et al. [6] presented an online frame-

work SODA to identify assaults on smart contracts. However,

none of them consider economic security beyond detecting

vulnerabilities against technical aspects. S.M.Wemer et al. [7]

distinguished between technological and economic security

and demonstrated that economic security is not flawless. K.Qin

et al. [8] investigated the scope of loan marketplaces and

assess the risk of lending agreements. L.Gudgeon et al. [9]

investigated how errors in design and pricing volatility of DeFi

protocols might lead to DeFi crises. K.Qin et al. [10] analyzed

the differences between CeFi (centralized finance) and DeFi,

covering legislation, economy, security, privacy et al.
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Fig. 1: Overview of the Analysis Path

However, DeFi is not secure enough that attacks on it keep

appearing, such as the Ronin Bridge incident [12]. It is shown

in [11] that the existing defenses do not reduce the number of

attacks. So the security against DeFi needs to strengthen.

Unfortunately, there is still a lack of systematic analysis

of DeFi system security. To assist in subsequent studies, our

research analyzes the technical and economic risks to which

Defi is vulnerable at the system level and comprehensively

follows the path in Fig. 1. We also summarize existing real-

world attacks in a way that provides a good foundation for

future research, then we summarize classical related protection

techniques. Finally, we provide an outlook on the possible

improvements that need to strengthen in this area.

The main contributions of this paper are as follows:

(1) To the best of our knowledge, we conduct the first
systematic examination on the security issues of the DeFi

ecosystem built on blockchain.

(2) We systematically summarize the vulnerabilities of the

Ethereum-based DeFi system, investigate real-world at-

tack events related to DeFi and classify them according

to their vulnerability principles.

(3) We survey the security optimizations in DeFi from the

system level and give some suggestions for future re-

search directions in this area.
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II. BACKGROUND

ETHEREUM: Ethereum is a public blockchain that uses

the Turing-complete programming language, such as Solidity,

to develop smart contracts [13]–[15]. Anyone can deploy

decentralized applications (dapps) on the Ethereum that can

communicate with others, and the most popular financial field

is DeFi, which provides a wide range of financial services.

GAS: To avoid overuse of network resources, all transac-

tions on Ethereum are paid a cost, and the total gas cost equals

the amounts of gas multiplied by gasPrice [16] [17]. The

user who proposes transactions sets the gasPrice, and the

transaction is conducted earlier if the gasPrice is high.

MINER EXTRACTABLE VALUE (MEV): It refers to the

profit miners make by performing a series of operations on the

blocks they mine [18], such as transaction inclusion, exclusion,

and reordering. Miners reorder transactions to optimize the

initial ordering of transactions. Earning additional ordering

optimization (OO) fees is also a source of MEV.

III. ANALYSIS OF VULNERABILITIES

To summarize threats in decentralized finance, we focus on

data, consensus, contract, and application layers.

1) Data Security Vulnerabilities:
Oracle Mechanism Vulnerabilities: The oracle is an au-

tomated service mechanism that allows the system to obtain

off-chain asset data as input [7]. However, as Fig. 1 shows, the

risk to oracle grows drastically when a single point of failure

occurs. For example, over 3 million sETH were arbitrated

(Address: 0x93819f6...) due to oracle errors in SYNTHETIX,

a protocol that converts entity into synthetic [19].

Inappropriate Key Management: In the DeFi ecosystem,

wallets are used to manage private keys, and authentication

is based on private keys in most cases. However, even the

safest hardware wallets have security issues [20] caused by

the design. For example, the Ronin Bridge was hacked for 624

million USD, which occurred in March 2022 [12]. The hackers

used a backdoor attack to get the signatures for stealing.

2) Consensus Mechanism Vulnerabilities:
Certain malevolent activity leverages the rules of consensus

to affect the sequences of transactions. There are some attacks

combined with MEV, such as flash loans [21], sandwich

attacks [22], and forking attacks [18].

Transaction Order Vulnerability: It means that attackers

alter the initial sequence of transactions by leveraging the

desire of miners for profit. The sandwich attack is an example,

the attacker spies on the victim, and pays a higher gas fee to

miners before the victim gets asset A, then sells A for arbitrage

since the victim’s purchase boosts the price [22].

Forking Vulnerability: Forking in DeFi is generally as-

sociated with transaction fee-based forks and time-bandit

attacks [18]. Mining revenue incentivizes miners to perform

normally, but the OO fee motivates them to reorder transac-

tions in the block, enhancing the income.

3) Smart Contract Vulnerabilities:
There are 20 types of smart contract vulnerabilities in

Ethereum defined in [23], of which Table I shows the security

weaknesses that attackers might use to make a profit. J.Choi

et al. [24] detected over 18K real-world smart contracts and

achieved an average coverage rate of 92 percent, and six bugs

that can be categorized into the three types as detailed below:

Suicidal and Greedy Contracts: Smart contracts usually

include a provision enabling the owner to commit suicide if

the contract is challenged. This suicide procedure can be car-

ried out for any cause under the suicidal contract [25]. Greedy

contracts do not have functions related to extraction [26]. The

contract locks all ether and cannot withdraw.

Block Info Dependency: In Ethereum, the discrepancy

between successive blocks is valid when the timestamps are

within 12 minutes [27]. However, if the contract combines

states in the block, the miner can control it for profit [23]. For

example, when the timestamp is used for a pseudo-random

function in a contract, miners with access to this block can

replicate the process of producing random numbers.

Unchecked External Call: The return values and argu-

ments of an external call can affect the states, and many

contracts do not check the return value leads to errors. Multiple

functions are nested, and the external call does not check the

return value can go wrong. Smart contracts trade by using

external call functions such as call() and send(). More

crucially, a failed external call results in a transaction not being

rolled back, which can cause logical effects.

4) Application Layer Vulnerabilities:
The vulnerabilities at the application level are based on the

manipulation of prices, and we summarize the existing flaws

from the following four perspectives.

Lending Market Imperfection: When the prices in the

market are out of balance, it will result in bad debts for one

of the participants in the market. To get more loans, attackers

can boost the exchange rate on the oracle by modifying the

real-time price-related status before the loan is made.

Cryptocurrency Instability: The large fluctuations of cryp-

tocurrencies come from many reasons, one of which is the

Pump-and-Dump. The instability can easily trigger liquidation

procedures. Exchanges have chosen stablecoin, which is tied

to the price of real money, as the pricing standard to minimize

losses, but they still exist as a risk.

Design imperfection: The attackers make use of incorrectly

configured functionality or specific convenience features of

DeFi platform exchanges [28]. Flash loan is designed as risk-

free loans to be a convenient improvement to the loan that

need to borrow the flash loan, exchange it for currency and

repay the loan in an atomic transaction.

Abusive Exposure Transaction: Exchanges disclose all

transactions as soon as feasible to ensure complete behavioral

transparency because off-chain matching services are not au-

tomated. Unfortunately, exchanges can restrict access to select

users and launch denial of service attacks [29] to dominate the

market, audit transactions and even front run the orders.
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TABLE I: Smart Contract Vulnerabilities in DeFi

Categories Causes Categories Causes
Unchecked External Calls Without checking return values Reentry Repeated calls before completed

Transaction State Dependency Failure to check permissions Nested Call Unrestricted call depth
DoS Under External Influence External exceptions inside loops Missing Return Denote return but no value
Unmatched ERC-20 Standard Not follow the standard Greedy Contracts Receive but not withdraw Ethers

Strict Balance Equality Balance check failed Block Info Dependency Status leakage
Misleading Data Location Incorrect storage type Missing Interrupter No backdoor to handle crises

Transaction State Dependency Error using tx.origin Arithmetic Operations Unmatched type to values

IV. ANALYSIS OF ATTACK EVENTS

In this section, we investigate real-world attacks in DeFi

and analyze the vulnerabilities exploited in the attacks.

1) Utilization of Flash Loan:
Flash loan is a type of unsecured lending that relies on the

atomicity of blockchain transactions at the point of execution

[30]. Flash loans bring dynamism to DeFi while reducing

the risk and cost to launch various attacks. The GRIM

FINANCE and POPSICLE FINANCE events were funded

through flash loan service to enable reentry vulnerabilities and

double solicitation attacks, respectively.

From Table II, the attacks against the flash loan service have

caused significant financial damage to the DeFi ecosystem.

Attackers borrowed money from lending platforms, e.g, DYDX

[31], with the flash loan service, then used the borrowed funds

to manipulate the price of tokens [32] to make an arbitrage.

TABLE II: Attacks Related to Flash Loan

Victims Date Amount
(million USD)

Harvest Finance Oct 26, 2020 24
Alpha Homora Feb 13, 2021 37

XToken May 12, 2021 24
PancakeBunny May 19, 2021 200
Belt Finance May 28, 2021 50

Cream Finance Oct 27, 2021 130
Beanstalk Farms Apr 18, 2022 182

2) Private Key Leakage:
Ethereum-based DeFi dapps need to interact with the wallet,

like METAMASK, and Ethereum provides the API [33] that

enables the interaction. Attackers get the private key of the

original contract deployers or managers to control the contract

to mint or transfer tokens to others under control. According to

Table III, the exposure of the private key causes great damage.

3) Reentry Attack:
The most significant reentry attack in Ethereum was the

DAO attack [34] that caused a hard fork of Ethereum. Reentry

attacks were applied to the DeFi protocol with its development.

The reentry attacks that occurred on the DFORCE and GRIM

FINANCE [35] platforms, together caused a loss of $54 million,

in Table IV. The DFORCE incident was caused by the fact that

the ERC-777 which is a standard for token contracts interfaces

and behaviors allows transaction notifications to be sent to the

recipient in the form of callbacks. This means that the ERC-

777 token indirectly results in the recipient having control of

the execution [7].

TABLE III: Attacks Related to Private Key Leakage

Victims Date Amount
(million USD)

Meerkat Finance Mar 04, 2021 31
Paid Network Mar 05, 2021 160

EasyFi Apr 19, 2021 80
bZx Nov 05, 2021 55

Vulcan Forged Dec 13, 2021 140
Ronin Bridge Mar 29, 2022 624

In the GRIM FINANCE incident, attackers publish a mali-

cious contract whose callback function contains a call to the

depositFor() function in the GRIMBOOSTVAULT CON-

TRACT. depositFor() returns proof of investment Spirit-

LP to the user. Therefore, it will call the callback function

in the malicious contract again to obtain multiple Spirit-LP

proofs. It allows the attacker to gain more additional revenue.

4) Arithmetic Bug:
Almost all DeFi applications involve arithmetic opera-

tions on currencies. These operations consist of adding or

subtracting from account balances and converting exchange

rates between different tokens [7]. Attackers typically target

weaknesses in arithmetic operations. It shows in URANIUM

FINANCE incident when checking the contract balance, the

bug resulted in the final contract calculating 100 times larger

than the actual balance [36] and losing $50 million.

TABLE IV: Attacks Related to Contract Bugs

Victims Date Amount
(million USD)

dForce Apr 19, 2020 24
Uranium Finance Apr 28, 2021 50

Compound Sep 30, 2021 80
Grim Finance Dec 19, 2021 30

Another example of arithmetic vulnerabilities is the integer

underflow of COMPOUND FINANCE (Address: 0x75442Ac...).

Its reward payouts CompSpeed can be set to 0, which indi-

cates that reward payouts are suspended, and the market award

index supplyIndex is 0. For new users, their award in-

dex supplierIndex initialized to CompInitialIndex
preset by COMPOUND as 1036. Parameters variation causes

the formula for calculating the difference in the reward index

to overflow, while the calculation of the reward relies on the

value of deltaIndex. There was no attacker in this security

incident, but rather an overpayment of rewards due to an

underflow vulnerability in the contract.
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5) Other Bugs:
Attacks Related to Oracle. Oracle serves as an information

channel between the DeFi and the outside world, giving

external asset values as an input source to the DeFi [37]. VEE

FINANCE requires that price variations in the mining pool of

more than 3% be re-inputted using oracle. Because its oracle

solely utilizes the prices in the mining pool as an input source,

the attacker can manipulate the token price in the pool, forcing

the oracle to update the price. As a result, the contract received

incorrect price information, skipping the slippage protection

[38] and resulting in a loss of $35 million for VEE FINANCE.
Phishing Attack. DeFi website embedded scripts that we

can interact with the user’s wallet API, which could facilitate

a phishing attack [39]. The attackers used a phishing attack on

BadgerDAO, causing it to lose $120 million. In the Badger-

DAO incident [40], the attackers stole the Badger developer’s

secret keys and injected malicious scripts into BadgerDAO’s

web pages. The scripts intercept the user’s transactions and

prompt the user to allow the attacker to operate on the ERC-

20 tokens in their wallets.
Attacks Related to Contract. The WORMHOLE incident

[41] caused about $320 million in damage on February 3,

2022. The attacker first calls the verify signature()
function to obtain signatures for the function post vaa().

However, the load instruction at() function called

in the verify signatures() function does not verify

the authenticity of the account, so the account can use the

obtained valid signatures to send messages to the contract.

Finally, the attacker used this vulnerability to send a message

casting 120,000 wETH to the contract.
Double-Claiming Attack. In Table V, the POPSICLE FI-

NANCE event [42] was attacked similarly to the double-

spending attack which creates multiple transactions.

TABLE V: Attacks Related to Other Bugs

Victims Date Amount
(million USD)

Spartan Protocol May 02, 2021 30
Popsicle Finance Aug 03, 2021 25

Poly Network Aug 10, 2021 26
Vee Finance Sep 21, 2021 37
BadgerDAO Dec 02, 2021 120

Qubit Finance Jan 28, 2022 80
Wormhole Feb 03, 2022 326

First, the attacker deposits funds via POPSICLE FINANCE,

and the platform returns a PLP Token certificate of deposit.

Then, the attacker transfers the certificate to other contracts

under his control. POPSICLE FINANCE calculates the user’s

reward incrementally via the fee0Earned() function. The

rewards are accumulated even if there is no asset in the user’s

account. Finally, the attacker controls the contract by calling

the withdraw() to remove the deposited funds and rewards.

V. ANALYSIS OF SECURITY OPTIMIZATION

1) Data Security Optimization:
Oracle optimization Schemes: Due to the necessity for off-

chain asset information such as pricing, as discussed in III-1,

there is an expanding demand for superior oracles [43]. Our

research focuses on the real-world oracle optimization choices

of Defi systems. The COMPOUND that aggregates pricing from

off-chain to on-chain via the CHAINLINK [37], delivers multi-

party data directly to the contract through reputation from

providers, forming a reference pricing network where nodes in

the chain may get price data. However, quantitative reputation

cannot match the oversized price makes it can only apply

on a small scale. Another form is MAKERDAO [44], which

collects off-chain data through the central medianizer which

is an aggregator. It utilizes the median of prices for pricing

and delays price updates by one hour before uploading so that

governors and users can react to faults to secure the process.

Wallet Key Security Optimization: Users initiate a trans-

action and sign it using the key pair, the assets in the account

are lost when the key leaks to an adversary. Some studies [45]

[46] proposed specific solutions for wallet management and

architecture. According to the study by A. Dabrowski et al.

[20], existing hardware wallets migrated from the PC wallet

architecture, resulting in a bad design that does not fix the

problem when just utilizing authentication and communica-

tion encryption. For interactive authentication, adding several

signatures and keys to the original wallet structure prevents

attackers from manipulating the keys for transactions. And It

was found to block attacks, but at the expense of efficiency.

2) Smart Contract Security Optimization:
The smart contract, which is a part of the DeFi project

connecting the data and the application layer, might alter

the state of a transaction, and cause errors, so it’s critical to

improve the security of contracts.

Smart Contract Vulnerability Detection: Much research

[24] [47]–[49] have been undertaken to discover contract vul-

nerabilities using various methods, such as formal verification,

and machine learning. Combined with dynamic testing extends

the ability of symbolic execution techniques to detect unknown

vulnerabilities, thus improving the robustness of programs.

Fig. 2 shows an overview of ILF [49] that combines fuzzing,

machine learning, and symbolic execution.

The system used the symbolic execution for a portion of

the contracts to generate transaction sequences as the training

dataset for a new model consisting of GRU which is a type

of neural network and a fully connected network so that the

model can learn the fuzzing in the state after the symbolic

execution to test contracts with high coverage.

Fig. 2: Schematic Diagram of ILF Process Framework
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Smart Contract Operation Regulation: However,

C.Ferreira Torres et al. [11] showed that contract vulnerability

detection can increase contract defensibility, but assaults have

not decreased, indicating that contract regulation has to be

further improved. It has been studied in [4] [6] [11] [50] [51],

and we briefly introduce SEREUM [51] in Fig. 3, a security

tool focused on runtime monitoring and verification.

Transaction Manager converts all control flows into con-

ditional jump instructions in the bytecode interpreter, and

then the taint engine identifies data flows in conditional jump

instructions, tagging storage variables as key variables and

writing them into the lock. The attack detector detects the vari-

ables, if the modification occurs, the whole transaction is rolled

back to the point where the variable was marked, which is the

starting point of the entire transaction. Experimental results

show that it can effectively prevent reentrancy vulnerability,

but false positive results need to be improved.

Fig. 3: Diagram of SEREUM System Architecture

3) Consensus Layer Optimization:
The consensus layer and the incentive layer are interde-

pendent, and the design of the consensus mechanism directly

affects the behavior of miners, although many consensus

mechanisms have been proposed, there is little regulation of

the consensus and incentive levels.

L.zhou et al. [21] developed DEFIPOSER to monitor fork

behaviors. Fig. 4 shows the part of it, it heuristically prunes

the patches after building the graph and then does a greedy

search of the negative cycle in the directed transaction flow

graph, which means finding all possible profitable cycles in the

trade flow graph, to detect arbitrage transactions in cyclic or

more complicated scenarios. A binary search of all the paths

finds the most profitable one. If it is within the quantization

threshold quantified by the Markov decision process, there is

a chance to motivate a fork attack by miners using MEV. It

showed that it can detect more attacks each one more day.

4) P2P Network Optimization:
The transactions initiated by each node in Ethereum are

transmitted through P2P networks to achieve self-governing;

however, the lack of a third party leads to a series of attacks,

such as the eclipse attack [52] [53] and sybil attack [54].

Y.Marcus et al. [53] suggest a series of protection methods

against eclipse attacks, two of which are also adopted by

geth. When a node restarts, the client’s seeding is trig-

gered every hour, or lookup() is called on an empty table
which stores the information in memory, but the seeding
is available only if the table is empty. However, node IDs

Fig. 4: Diagram of DEFIPOSER Core Process

should always be inserted into the table to prevent attacks.

Specifically, geth runs a lookup() on three random targets

during seeding to add more nodes from the db which stores

the information on disk to the table to prevent attackers.
5) Application Layer Optimization:
Methods for lower levels can not fully recognize the at-

tacks against the application layer. There still exists some

research [4] [32] that makes contributions.

B.wang et al. [4] designed BLOCKEYE to divide the

detection work into two phases. In Fig. 5, the first phase uses

symbolic execution analysis in oracle to check whether state

data streams are externally manipulated to detect vulnerable

DeFi, and during the second phase, transaction monitors under

the chain collect transactions to extract the features and

further analysis to monitor the attack. And there were some

unprecedented security attack had been discovered.

Fig. 5: Diagram of BLOCKEYE Core Process

VI. CONCLUSION AND FUTURE DIRECTION

The focus of this paper is on the security of DeFi, and

we summarize a series of security risks of DeFi by analyzing

their projects deployed in Ethereum. For each vulnerability, we

explore its causes with real-world cases. Finally, we investigate

the optimization options for decentralized finance and suggest

possible future directions.

Comprehensive knowledge of security and risk problems

is critical to improving blockchain and establishing powerful

defense capabilities in practice. There is a strong possibility

to combine static detection with dynamic supervision tech-

nologies to protect DeFi at the consensus mechanism, smart

contract, and application levels for the future development of

DeFi application security.
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