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1 Introduction

Responsiveness is critical for smartphones. However, smartphones are likely to be unre-
sponsive because of their limited computing resources and frequent network operations.
Previous researches show that many Android applications suffer from poor responsiveness
and one of the primary reasons is that applications run too much workload in the UI event
thread (Liu et al. 2014; Yang et al. 2013). The primary way to avoid unresponsiveness is
to resort to concurrency that puts long-running tasks into background threads and runs the
main thread and the background threads asynchronously.

To make asynchronous programming easier, Android provides three major async con-
structs: AsyncTask, IntentService, and AsyncTaskLoader. AsyncTask is
designed for short-running tasks while the other two are good choices for long-running
tasks. Although AsyncTask is the most widely used construct, it may result in memory
leaks, lost results, and wasted energy if improperly used (Lin et al. 2014, 2015). The other
two constructs do not suffer from the same problems encountered by AsyncTask because
they do not hold a reference to GUI (Lin et al. 2015). AsyncTaskLoader is introduced
after Android 3.0, and it only supports two GUI components: activity and fragment. Hence,
Lin et al. developed ASYNCDROID (Lin et al. 2015) to refactor AsyncTask-related code
into using IntentService, a more general and safer async construct.

We conduct a systematic study on IntentService to check whether the async con-
struct is used properly and whether hackers can take advantage of unprotected intents to
launch attacks. We find that in Android 6, 974 intents are not well protected and hence can
be sent by third-party applications. Based on this observation, we develop a tool, ATUIN
(short for ATtacks by exploiting Unprotected INtents), to demonstrate the feasibility of
attacking CPU automatically by periodically sending unprotected intents that can be pro-
cessed by Android system. Furthermore, by inspecting unprotected intents, we discover tens
of critical vulnerabilities that have not been reported before, such as Wi-Fi DoS, telephone
signal block, SIM card removal, homescreen hiding, and NFC state cheating.

Overall, our study has three major contributions:

– We conduct the first systematic study on IntentService, and discover nearly 1000 unpro-
tected intents in Android 6, which could be exploited to launch Denial-of-Service
attacks on the system.

– We develop ATUIN to demonstrate the feasibility of attacking CPU automatically by
periodically sending unprotected intents that can be handled by Android system.

– We further discover tens of critical unreported system vulnerabilities that can disable
some key functionalities of smartphones (e.g., Wi-Fi, telephone, launch activity).

The rest of this paper is organized as follows. Section 2 gives a motivating example.
Section 3 briefly introduce background knowledge. Section 4 presents the approach and
results of the systematic study. Section 5 details the implementation of ATUIN and its
experimental results. Section 6 elaborates on the discovered vulnerabilities. We discuss the
threats to validity in Section 7. Related studies are briefly discussed in Section 8. This paper
concludes in Section 9.

2 Motivating example

This section shows a real vulnerability in Android 6 which involves an unprotected
intent ACTION STEP IDLE STATE. By exploiting the intent, any third-party applications
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without requiring any permissions can force a smartphone to leave IDLE state immedi-
ately after it enters IDLE state. Therefore, hackers can deplete the battery power of Android
phones quickly.

To save power, Android 6 introduces a new feature, so-called Doze mode, which is able
to reduce power consumption aggressively by forbidding or deferring critical tasks when the
smartphone is in IDLE state. In implementation, Android 6 defines seven states, in which only
IDLE state can save power. Figure 1 shows a part of the code implementing state transitions.

More specifically, the core source file of Doze mode is /services/core/java/
com/android/server/DeviceIdleController.java, which defines a pend-
ing intent ACTION STEP IDLE STATE. When a pre-established time slice expires,
the AlarmManager sends the intent to trigger state transition. We can see that
DeviceIdleController.java registers a broadcast receiver (Line 240), and
if it receives the ACTION STEP IDLE STATE intent (Line 253), the function
stepIdleStateLocked (Line 255) will be invoked. The code (Line 1266 to 1277)
demonstrates that Android system transfers from INACTIVE state (Line 1266) to
IDLE PENDING state (Line 1274) once the stepIdleStateLocked is invoked.

However, the implementation of Doze mode is vulnerable since the critical intent ACTION
STEP IDLE STATE is unprotected, indicating that any third-party applications can send
the intent without requiring any permissions. Therefore, an attacker can deplete the battery
quickly by tricking innocents to install the malware which detects current state and then sends
the specific intent if Android is in IDLE. We have to mind that tricking users to install
the malware would not be difficult since the malware does not need any permissions. A 3-h
testing shows that an LG Nexus 5X under attack consumes 6X more power than the normal
situation. A detailed description of the attack can refer to our previous work (Chen et al. 2016).

3 Background

This section introduces the background knowledge closely related to this study. First,
we present the overall architecture of the Android system. Then, we focus on the four

Fig. 1 Vulnerable code in implementing Doze mode
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components of the application. Finally, we will describe the main techniques exam-
ined in this paper, namely ICC (Inter-Component Communication) and asynchronous
programming.

3.1 Android system infrastructure

Android is an operating system for mobile devices such as smartphones and tablet comput-
ers, which is developed by the Open Handset Alliance led by Google. Android has evolved
quickly since its first commercial version Android 1.0 that was released on September 2008.
The newest version, Android 7 whose code name is Nougat was released on August 22, 2016.

Although Android evolves quickly, its infrastructure keeps stable, as shown in Fig. 2.
Android consists of five parts: Linux Kernel, Android Runtime, Libraries, Application
Framework, and Applications. Linux Kernel manages hardware drivers, network, battery,
system security, memory, etc. Android Runtime consists of Core Libraries which provide
most functionalities in Java core libraries, and a Dalvik virtual machine (DVM). Android
can run multiple DVMs simultaneously, with one application in each DVM.

Application Framework provides a set of services (e.g., Resource Manager,
Notification Manager, Activity Manager) for applications, so programmers
can develop varied applications by invoking framework’s APIs. Applications is the top
layer of Android which hosts built-in applications and third-party applications. The lay-
ered infrastructure ensures that the lower layers provide services for higher layers, and also
benefits programmers for different layers concentrating on their own layers.

3.2 Android application structure

An Android application has at least one of the following components: Activity,
Service, Broadcast Receiver, and Content Provider. An activity is the
entry point for interacting with the user. It represents a single screen with a user inter-
face. A service is a general-purpose entry point for keeping an application running in the
background for all kinds of reasons. It is a component that runs in the background to per-
form long-running operations or to perform work for remote processes. A service does not
provide a user interface.

A broadcast receiver provides a new approach to the Android system for sending events
to the app, and empowers the app to receive the announcements broadcasted by the system.
Because broadcast receivers are another well-defined entry into the application, the system

Fig. 2 Infrastructure of Android system
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can deliver broadcasts even to applications that aren’t currently running. A content provider
manages a shared set of application data that you can store in the file system, in an SQLite
database, on the web, or on any other persistent storage location that your application can
access. Through the content provider, other applications can query or modify the data if the
content provider allows it.

3.3 ICC

Different components in an application can communicate using ICC objects, mainly Intents.
By the same way, components can also communicate across applications, allowing devel-
opers to reuse functionality. For example, Google Map provides navigation function, so
any restaurant applications just need to give the location coordinates and invoke Google
Map for navigation by sending appropriate intent. Android intents are two types in nature.

– Explicit intents, explicitly define the exact component which should be called by the
Android system, by using the Java class are identifier. Explicit intents are often used in
ICC within the application because the name of invoked should be given correctly.

– Implicit intents specify the action which should be performed by other components or
applications. Implicit intents are usually used for IAC (Inter-Application Communi-
cation) since the action should be performed rather than the exact name of the called
component should be specified.

3.4 Android asynchronous programming

To ease asynchronous programming which is a widely used approach to reduce application
latency, Android provides three major async constructs: AsyncTask, IntentService,
and AsyncTaskLoader.

– AsyncTask provides a doInBackground method for encapsulating asyn-
chronous work. Besides, it provides four event handlers (i.e., onPreExecute,
onProgressUpdate, onPostExecute, and OnCancel) which are run in the
UI thread. The doInBackground and these event handlers share variables through
which the background task can communicate with UI (Lin et al. 2015). Figure 3
depicts the workflow of AsyncTask. AsyncTasks should ideally be used for short
operations (a few seconds at the most).

Fig. 3 The workflow of AsyncTask (Lin et al. 2015)
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– IntentService is a base class for Services that handle asynchronous
requests (expressed as Intents) on demand (IntentService https://developer.
android.com/reference/android/app/IntentService.html). Clients send requests through
startService (intent) calls; the service is started as needed, handles each intent
in turn using a worker thread, and stops itself when it runs out of work. Please note
that all requests are handled on a single worker thread—they may take as long as nec-
essary and will not block the application’s main loop (IntentService https://developer.
android.com/reference/android/app/IntentService.html). To get the task result, the GUI
that starts the service should register a broadcast receiver. After the task is finished,
IntentService sends its task result via the sendBroadcast method. Once the
registered receiver on GUI receives this broadcast, its onReceivemethod will be exe-
cuted on UI thread, so it can get the task result and update GUI (Lin et al. 2015). The
workflow of IntentService is given in Fig. 4. Therefore, IntentService is a
good choice for long-running tasks.

– AsyncTaskLoader, as it name suggests, is built on top of AsyncTask, and it pro-
vides similar handlers as AsyncTask. Unlike AsyncTask, AsyncTaskLoader
is lifecycle aware: Android system binds/unbinds the background task with GUI
according to GUI’s lifecycle (Lin et al. 2015).

4 Unprotected intents

In this paper, we examine Android 6 because it accounts for 31.2% market share in May
2017 (Bandla http://www.gadgetdetail.com/android-version-market-share-distribution/)
instead of the newest Android N/7 because it is installed on very few smartphones, about just
7.1% (Bandla http://www.gadgetdetail.com/android-version-market-share-distribution/). All
experiments are conducted on a real smartphone, Huawei Nexus 6P.

We develop a tool to find all unprotected intents defined in Android 6 automatically,
which consists of the following steps. First, the tool parses the source code of Android sys-
tem to search for this pattern “new intent,” because all intents should be defined according
to the pattern. Then, the tool searches for the types of intents by exploring the fact that
Android always defines the types in the beginning of source files as constant strings. After
eliminating the duplicate intent types, we get 1235 intents defined in Android 6.

Then, we determine all protected intents that should not be sent by third-
party applications by analyzing the manifest file /frameworks/base/core/res/
AndroidManifest.xml because Android lists all protected intents in it. We find

Fig. 4 The workflow of IntentService (https://developer.android.com/reference/android/app/IntentService.html)
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that all protected intents are defined in a fixed pattern like <protected-broadcast
android:name=XXX/>, where XXX is a string indicating the intent type. Android for-
bids third-party applications to send protected intents as follows: (1) before forwarding an
intent to the target component, Android system checks whether the intent is in the protected
list; (2) if so, Android checks whether the application that sends the intent has system priv-
ilege; (3) if not, Android system terminates the application with a crash. Our tool parses
all manifest files and extracts 261 protected intents from them, and therefore the number of
unprotected intents should be 974.

We count high-risk unprotected intents that involve hardware and system operations,
and classify them into seven categories, as shown in Fig. 5. For example, the intent
android.provider.Telephony.SMS REJECTED belongs to the Call & SMS cat-
egory. One observation from Fig. 5 is that system components use unprotected intents for
async operations and communications frequently, indicating that unprotected intents would
be good choices to attack Android system. For instance, there are 120, 112, 109 unprotected
intents belong to Call & SMS, System Settings, System UI, respectively. Sections 5 and 6
will present the attacking sceneries by exploiting the unprotected intents.

5 ATUIN: attacks by exploiting unprotected intents automatically

This section details the design and implementation of our tool, ATUIN, to demonstrate the
feasibility of attacking CPU automatically. That is, it will result in high CPU utilization
ratio, thus the responsiveness of smartphones can be weakened. The basic idea of this attack
is to force Android system to repeatedly execute heavy-weight functions for handling intents
by sending those intents periodically.

The proposed CPU attack is stealthy, although it is not complicated for the following
reasons. First, the malware itself does not contain much code to be executed; instead, it
forces Android to execute a lot of system code. Second, the malware does not need any
permissions so that it can evade permission-based detection approaches. Moreover, a hacker
can adjust attacking strength flexibly by setting the speed of sending intents.

C1 C2 C3 C4 C5 C6 C7
Categories: C1.Call&SMS, C2.System Settings, C3.System UI,

C4.Bluetooth, C5.Media&Storage, C6.Network, C7.Sensors
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Fig. 5 Numbers of different categories of unprotected intents
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Fig. 6 Workflow of ATUIN

To launch an effective and efficient CPU attack, ATUIN aims to use the intents that
force Android system to spend computational resources to handle them. Note that Android
system will not process all intents. For example, the intents that are used for informing
third-party applications about the change of system state will not be processed by Android
system. Actually, Android system just sends those intents, rather than receiving them. If any
third-party applications send the intents without processing code, Android system simply
discards them.

To the end, ATUIN follows the workflow as shown in Fig. 6, which consists of three
steps. The first step is finding all statically registered broadcast receivers. According to
Android programming guides, all statically registered broadcast receivers should be listed
in manifest.xml. Therefore, ATUIN parses all manifest files and extracts necessary
information from them, such as which component can receive broadcasts and which types of
broadcasts can be received. Fortunately, Android defines a fixed pattern to register broadcast
receivers in manifest files, facilitating the parsing process of ATUIN.

Figure 7 gives a code snippet in /packages/apps/Bluetooth/AndroidMani-
fest.xml. The code highlighted by blue lines indicates the keywords searched by
ATUIN. For example, ATUIN searches for <receiver and </receiver> to locate
the registration of a broadcast receiver, and searches for android:name= to find the
component that receives intents. Moreover, ATUIN looks for <intent-filter> and
</intent-filter> to locate intent filters. Then, ATUIN searches for the pattern
<action android:name= to find the type of intent that can be processed.

The code underlined by red lines contains the information ATUIN required. For exam-
ple, Fig. 7 indicates that the component .opp.BluetoothOppReceiver can receive
two types of intents, android.bluetooth.adapter.action.STATE CHANGED
and android.btopp.intent.action.OPEN RECEIVED FILES.

The second step is discovering dynamically registered broadcast receivers that are
widely-used when developers want to control the life circle of the broadcast receivers.
ATUIN finds this kind of broadcast receivers by code analysis. Note that Android
enables applications to register broadcast receivers dynamically (i.e., the framework

Fig. 7 A statically registered broadcast receiver
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API, registerReceiver should be invoked). Figure 8 illustrates how the component
GsmServiceStateTracker registers a broadcast receiver at runtime to receive the
intent ACTION RADIO OFF.

ATUIN firstly searches for the API invocation, registerReceiver, and then
gets the second parameter, filter in this example. Afterwards, ATUIN looks for the
API invocation, addAction before the invocation of registerReceiver, and then
gets the parameter, ACTION RADIO OFF. Finally, ATUIN searches for the definition of
ACTION RADIO OFF which is a constant string in Android source code.

The third step is extracting the data attached to the intent since ATUIN
aims to trigger the processing code of the corresponding intent. If the data is
not provided correctly, the processing logic will abort quickly, result in non-
obvious attacking effect. ATUIN conducts inter-procedural data flow analysis to dis-
cover valid data parameters of intents. For a better understanding of the inter-
procedural analysis, we take the code in Fig. 27 as an example. The code getIntExtra
(NfcAdapter.EXTRA ADAPTER STATE,NfcAdapter.STATE OFF) indicates that
the parameter is named EXTRA ADAPTER STATE and it is an integer. Then, inter-
procedural data flow analysis shows that the data attached in the intent is passed as a
parameter newState of the function handleNfcStateChanged. After that, ATUIN
searches for the statement that newState is compared with a constant integer since
the comparison is used for executing the corresponding program logic for different data.
Hence, ATUIN finds that the attached data, NfcAdapter.EXTRA ADAPTER DATA
can be set as NfcAdapter.STATE OFF, NfcAdapter.STATE ON, NfcAdapter.
STATE TURNING OFF, or NfcAdapter.STATE TURNING OFF. According to this
process, ATUIN can extract and set parameters attached to the targeted intent.

The experiments consist of three sceneries: no attacks, attack by sending 20 intents with
and without processing code respectively, as shown in Figs. 9, 10, and 11. The observation is
that our tool attacks CPU effectively, i.e., CPU utilization ratio rises from 11.17 to 71.13%.
Moreover, to adapt to heavy workload, Android adjusts CPU frequency from 652.8 MHz
to 1.22 GHz. On the contrary, attacking by sending the intents without processing code can
only slightly increase CPU utilization ratio by 4.74%.

6 Case studies: critical vulnerabilities

In this section, we analyze the unprotected intents and examine the negative effect on
Android system if they are exploited by an attacker. In particular, we investigate the pro-
cessing code of selected unprotected intents in depth and find tens of critical vulnerabilities
that have not been reported before. This section describes five important vulnerabilities. The
attacks exploiting each vulnerability are recorded and the videos can be found at https://
goo.gl/QZn7Rk.

Since it is time-consuming to analyze each unprotected intent manually, we prefer to the
unprotected intents that either (1) change system states, (2) operate hardware component

Fig. 8 A dynamically registered broadcast receiver

https://goo.gl/QZn7Rk
https://goo.gl/QZn7Rk
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Fig. 9 CPU utilization ratio
without attacks

(e.g., Wi-Fi, SIM card, UI), or (3) get access to private information (e.g., contact, photos).
Then, we analyze the processing code and generate attacks manually. We try four heuristic
strategies to launch attacks. The first is sending an unprotected intent once with valid data.
The second is sending an unprotected intent once with invalid data. The third is sending
an unprotected intent with valid data repeatedly at a higher rate. The last is sending an
unprotected intent with invalid data repeatedly at a higher rate.

The last step is checking whether the performance or functionalities of Android system
or applications are impaired. To do so, we try each critical functionalities manually, such
as Wi-Fi, Bluetooth, Telephone to examine whether they can work as usual. Moreover, we
resort to behavior monitoring tool (e.g., DROIDBOX https://github.com/pjlantz/droidbox)
to find abnormal behaviors as well as privacy leakage. Furthermore, we use performance
profiling tool (e.g., Android Studio Performance Profiling Tools https://developer.android.
com/studio/profile/index.html) to discover abnormal performance degradation, such as high
CPU utilization ratio, fast power depletion, excessive memory consumption.

6.1 Wi-Fi DoS

This attack takes advantage of the unprotected intent: ACTION DEVICE IDLE that
is defined in /frameworks/opt/net/wifi/service/java/com/android/
server/wifi/WifiController.java. It is easy to reproduce the attack which
broadcasts the intent without data attached to the intent. After the attack is successfully

https://github.com/pjlantz/droidbox
https://developer.android.com/studio/profile/index.html
https://developer.android.com/studio/profile/index.html
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Fig. 10 CPU utilization ratio
when sending 20 intents without
processing code

launched, Wi-Fi signal will be blocked and Android system cannot connect to any access
points, as shown in Fig. 12.

The vulnerability-related code is shown in Fig. 13. The component WifiController
registers a broadcast receiver (Line 181), and if one ACTION DEVICE IDLE intent
is received (Line 185), a message termed by CMD DEVICE IDLE will be sent.
WifiController defines a routine, processMessage (Line 710) to handle all Wi-
Fi related commands. In particular, if the message is CMD DEVICE IDLE, the function
checkLocksAndTransitionWhenDeviceIdle will be invoked. In this function,
we can find state transitions.

Android defines 12 states (as shown in Fig. 14) andmaintains state transitions in /frame
works/opt/net/wifi/service/java/com/android/server/wifi/Wifi-
Controller.java. The 12 states are not in the same hierarchy; instead, some states are
the sub-states of another state. For instance, addState(mApStaDisabledState,
mDefaultState) indicates that mApStaDisabledState is a sub-state of
mDefaultState. The complete hierarchical relation of states is depicted in Fig. 15. We
can see that mDefaultState is the parent state of all other states and all states involving
the function checkLocksAndTransitionWhenDeviceIdle are the sub-states of
mDeviceInactiveState.

Our attack implements a piece of malware without requiring permissions which
sends the unprotected intent, CMD DEVICE IDLE. After processing by checkLocks
AndTransitionWhenDeviceIdle, the parent state, mDefaultState will handle
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Fig. 11 CPU utilization ratio
when sending 20 intents with
processing code

this intent, as shown in Fig. 16. At Line 359, a global variable mDeviceIdle is set to
true.

When users tag the Wi-Fi slider (as shown in Fig. 12), the component
wifiService will generate an intent, CMD WIFI TOGGLED. However, none of the
five sub-states of mDeviceInactiveState can handle this intent. Interestingly,
mDeviceInactiveState cannot process this intent, and hence this intent will be for-
warded to its parent state, mStaEnabledState. Afterwards, mStaEnabledState
handles CMD WIFI TOGGLED as shown in Fig. 17, indicating that Android sys-
tem will transfer to one of the two states, mStaDisabledWithScanState and
mApStaDisabledState.

mStaDisabledWithScanState and mApStaDisabledState process
CMD WIFI TOGGLED in a similar way, as shown in Fig. 18. If the variable mDeviceIdle
is false, Android system will transfer to mDeviceActiveState, the state a smart-
phone can connect to access points. However, our attack makes mDeviceIdle be
true by sending the unprotected intent, ACTION DEVICE IDLE. As a consequence, we
successfully DoS the Wi-Fi component.

6.2 Telephone signal block

Our attack exploits the unprotected intent, ACTION RADIO OFF that is defined in /frame-
works/opt/telephony/src/java/com/android/internal/telephony/
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Fig. 12 Symptom after Wi-Fi
DoS attack

ServiceStateTracker.java. Since the definition of this intent cannot be found
in Android API, it should be reserved for internal use only. However, Android 6 does
not protect the intent, and thus any third-party applications can send the intent without
restrictions.

After sending one ACTION RADIO OFF intent, the signal of the smartphone will be cut
immediately and the signal will reappear in a short while. Therefore, by sending the intent
periodically, we can block telephone signal at all, as shown in Fig. 19. The most obvious
symptom is that a smartphone under attack cannot make or receive telephone calls.

The vulnerable code is located in /frameworks/opt/telephony/src/java/
com/android/internal/telephony/gsm/GsmServiceStateTracker.java
(as shown in Fig. 20). It registers a broadcast receiver (Line 171) to receive the intent (Line
183). When an ACTION RADIO OFF is received, the function powerOffRadioSafely
is invoked (Line 186), where the function hangupAndPowerOff is called (Line 2153).
hangupAndPowerOff firstly hangs up all active phone calls if any (Line 562 to 566), and
then powers off the radio by invoking setRadioPower (Line 568). The immediate obser-
vation of our attack is that telephone signal vanishes because the radio component is turned off.

6.3 SIM card removal

Our attack can disable all SIM-card-related functionalities, such as making/receiving
calls, sending/receiving SMS messages by periodically sending an unprotected intent,
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Fig. 13 Vulnerable code exploited by Wi-Fi DoS attack

ACTION CARRIER CONFIG CHANGED that is defined in /frameworks/base/
telephony/java/android/telephony/CarrierConfigManager.
java as shown in Fig. 21. Interestingly, the explanation for the intent definition shows that
this intent should be sent by the system. However, Android 6 does not protect the intent
from being sent by third-party applications.

Fig. 14 Definitions of twelve states of Wi-Fi
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Fig. 15 Hierarchical relation of states

Fig. 16 Processing code in
mDefaultState

Fig. 17 Processing code in mStaEnabledState

Fig. 18 Processing code in mStaDisabledWithScanState
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Fig. 19 Symptom after telephone signal block attack

The component SimChangeReceiver (as shown in Fig. 22) registers a broadcast
receiver to receive the intent (Line 42) and processes the intent in corresponding callback
function (Line 46). When an ACTION CARRIER CONFIG CHANGED intent is received,
the settings of SIM-card-related components, such as voice mail and phone account, are
refreshed. By sending the unprotected intent repeatedly, the attack is capable of deny-
ing the services of SIM-card-related components. Figure 23 demonstrates that the tested
smartphone can neither find the SIM card nor make calls under the attack.

6.4 Homescreen hiding

Android’s homescreen provides shortcuts to applications, which is an user-friendly
design. Our attack is able to hide all shortcuts on the homescreen by just sending

Fig. 20 Vulnerable code exploited by telephone signal block
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Fig. 21 Definition of ACTION CARRIER CONFIG CHANGED

unprotected intents periodically. We find that two intents can be exploited to
achieve the same attacking effect, which are ACTION MANAGED PROFILE ADDED and
ACTION MANAGED PROFILE REMOVED.

Android uses the same piece of code to process the two intents, which are
in /packages/apps/Launcher3/src/com/android/launcher3/Launcher
Model.java, as shown in Fig. 24. The component LauncherModel registers a
broadcast receiver to receive the two intents (Line 1281 and 1282). If any one of them is
received, the function forceReload (Line 1284) will be invoked, in which the launch
activity will be reloaded. Note that the launch activity corresponds to the homescreen.
Hence, the shortcuts will be hidden if the launch activity reloads in a fast rate, as shown in
Fig. 25.

6.5 NFC state cheating

Near field communication (NFC) is a set of short-range wireless technologies, allow-
ing users to share small payloads of data between an NFC tag and an Android-
powered device, or between two Android-powered devices. Our attack can change the
UI which presents the state of NFC, and thus users will be cheated. This attack
takes advantage of the intent ACTION ADAPTER STATE CHANGED that is defined in

Fig. 22 Vulnerable code exploited by SIM card removal
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Fig. 23 Symptom after SIM card removal attack

/frameworks/base/core/java/android/nfc/NfcAdapter.java, as shown
in Fig. 26.

The component NfcEnabler processes the intent and updates UI, as shown in
Fig. 27. In particular, the callback function of the registered broadcast receiver invokes
handleNfcStateChanged (Line 49) to process the intent. In this function, Android
updates UI according to the change of states. Please note that Android defines four states
to maintain NFC component (i.e., STATE OFF, STATE TURNING ON, STATE ON, and
STATE TURNING OFF), as shown in Fig. 26.

UI changes according to state transitions. To be specific, if NfcEnabler thinks the
state is STATE OFF, the state of NFC slider (as shown in Fig. 28) will be unchecked and
can be changed by tapping. If NfcEnabler considers the state to be STATE ON, the state
of NFC slider will be checked and can be changed. If NfcEnabler considers the state to
be STATE TURNING ON, the state of NFC slider will be checked, but it can not be changed
by finger tapping. If NfcEnabler thinks the state is STATE TURNING OFF, the state of
NFC slider will be unchecked and it can not be changed by finger tapping. Though source
code inspection, we find the that both STATE TURNING ON and STATE TURNING OFF
are intermediate states between STATE OFF and STATE ON. Therefore, if UI is in either
intermediate states, the NFC slider can not respond to user interactions.

Our attack sends the unprotected intent that sets the attached data
EXTRA ADAPTER STATE as STATE ON. As a consequence, the UI indicates that NFC is

Fig. 24 Vulnerable code exploited by homescreen hiding
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Fig. 25 Symptom after homescreen hiding attack

enabled, however, the real state of NFC component is still turned off, as shown in Fig. 28.
Our attack can also send the unprotected intent with EXTRA ADAPTER STATE setting as
other values, making UI present other misleading states.

7 Threats to validity

7.1 Internal threats

There are some internal threats to the confidence in saying the study’s results are correct.
First, this work uses some programming patterns to find the definitions of intents, the decla-
ration of protected intents. However, the patterns are concluded by manual code inspection.
Hence, the number of intents, protected intents, and unprotected intents may not accurate

Fig. 26 Definition of ACTION ADAPTER STATE CHANGED and several states
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Fig. 27 Vulnerable code exploited by NFC state cheating

since developers can declare intents while not following the patterns. Moreover, we clas-
sify unprotected intents according to their names. However, one intent may be processed by
different components, increasing the difficulty of accurate classification.

Additionally, the explanations of the vulnerabilities presented in Section 6 depend on
manual code analysis, that may be inaccurate. The reason lies that after the observation of
attacks, we check the source manually, which is not guaranteed to be accurate. In the future,
we will validate the causes of attacks through dynamic debugging. Besides, the experiments
of ATUIN randomly select 20 intents. However, the number and selection of intents can

Fig. 28 Symptom after NFC state cheating attack
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influence the experimental results. For example, the process of an intent involving heavy I/O
operations may cause higher CPU utilization ratio than the intent whose processing code is
much simpler. We leave the investigation of the selection strategy as future work.

7.2 External threats

There are several external threats to the confidence in stating whether the study’s results
are applicable to other groups. First, we conduct all experiments on one device, Huawei
Nexus 6P. We plan to carry out similar studies on other Android devices in future. Second,
this work only studies Android 6, leaving the investigation of other versions as future work.
Third, this study uses fixed programming patterns to find the definitions of intents and the
declarations of protected intents. Other versions of Android may not use the same patterns.

8 Related work

This work relates to the following research topics on Android, which are asynchronous-
programming-related bugs, DoS attacks, resources-depletion attacks, intents-related bugs,
and other performance bugs. This section briefly discusses the five categories of related
studies separately.

8.1 Asynchronous-programming-related bugs

The heavy workload in main thread is a well-known cause of many performance prob-
lems (Liu et al. 2014). Android provides several async constructs (e.g., AsyncTask,
IntentService and AsyncTaskLoader) that enable developers to put long-running
tasks into background threads. However, existing studies (Lin et al. 2014, 2015; Chen et al.
2016; Kang et al. 2016) show that developers have to use AsyncTask carefully to avoid
security vulnerabilities.

ASYNCHRONIZER (Lin et al. 2014) is an automated refactoring tool that enables devel-
opers to extract long-running operations into AsyncTask and uses a points-to static
analysis to determine the safety of the transformation. ASYNCDROID (Lin et al. 2015) is
a refactoring tool which enables Android developers to transform existing improperly-used
async constructs (i.e., AsyncTask) into correct constructs (i.e., IntentService).

DIAGDROID (Kang et al. 2016) is a UI performance diagnosis tool, which is able to
profile the asynchronous executions in a task granularity, equipping it with low-overhead
and high compatibility merits. Chen et al. (2016) is our previous work which investigates
a new feature, Doze mode in Android 6. Chen et al. (2016) finds one unprotected intent in
the code for implementing Doze mode and proposes several approaches to deplete battery
power by exploiting the intent.

8.2 DoS attacks

This work discovers tens of vulnerabilities. By exploiting them, hackers can deny some crit-
ical services of Android 6, such as Wi-Fi, telephone signal, SIM card, and launch activities.
As far as we know, none of the proposed attacks were covered by related studies. Huang
et al. (2015) proposed a new type of vulnerabilities, Android stroke vulnerabilities (ASV)
which can lead to system Services freezing and system server shutdown. ASV corresponds
to a flaw in the design of the coarse-grained concurrency control in the core of Android,
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System Server, leading to a chance of DoS attacks. Based on the vulnerability, hackers
can launch attacks in a straightforward way: writing a simple loop to call normal Android
APIs to easily craft several exploits.

Different with their previous work (Huang et al. 2015), Liu’s group discovers another
vulnerability in System Server, that is the flaw in designing of synchronous callback
mechanism (Wang et al. 2016). By exploiting the vulnerability, they enable a malicious
application to freeze critical system functionalities or soft-reboot the system immediately.
After elaborative construction, they successfully to launch other meaningful attacks, such
as anti anti-virus, anti process-killer, hindering app updates or system patching.

Armando et al. propose a DoS attack that makes devices become totally unrespon-
sive (Armando et al. 2012). Their work bases on the observation that Android sets security
policies to protect Zygote, a process enables fast start-up for new processes from being
exploited by attacks. However, the protection is weak that can be bypassed easily, resulting
in a large number of dummy processes until all memory resources are exhausted. Eian and
Mjolsnes (Eian and Mjolsnes 2012) use formal method to identify deadlock vulnerability
that causes DoS attacks in IEEE 802.11w protocol.

8.3 Resources-depletion attacks

This study implements ATUIN to attack CPU, leading to a high CPU utilization ratio. The
related study aforementioned (Armando et al. 2012) can exhaust all memory resources. This
section mainly focuses battery-draining attacks, which should be a severe threat to mobile
devices since they are power-limited and not always plugged. Our previous work (Chen
et al. 2016) drain battery silently by exploiting an unprotected intent.

Fiore et al. proposed to drain battery stealthily by sending the victim’s browser with
unhearable audio files (Fiore et al. 2014), for example, sounds below 20 Hz. As a result, the
power is wasted by playing unhearable music. Researchers found that Android applications
can deplete battery (deliberately or unintentionally) by misusing power management APIs.
To reduce battery consumption aggressively, Android exports wakelock-related APIs to
application programmers. Hence, applications can keep the smartphone awake by acquiring
a wakelock, and then allow it to sleep after releasing the wakelock. However, programmers
sometimes forget to release wakelocks in each path (Jindal et al. 2013a; Pathak et al. 2012),
or place wakelocks in wrong places (Alam et al. 2014; Jindal et al. 2013b), incurring power
waste or faulty program logic. NANSA (Bauer et al. 2015) holds a partial wakelock, pre-
venting CPU going to sleep and then stimulates benign applications to do power-intensive
work when the screen is off.

8.4 Intents-related bugs

INTENTFUZZER (Yang et al. 2014) generates intents to discover capability leaks of Android
applications that finds more than 100 applications in Google play has at least one permis-
sion leak. Android system can be attacked by the web browsers which support intent scheme
URLs. When parsing an intent scheme URL, the web browser will generate intents to launch
activities. By exploiting intent scheme URLs, hackers can launch attacks including cookie
file theft and universal XSS (Terada 2014, http://www.mbsd.jp/Whitepaper/IntentScheme.pdf).
Schartner and Bürger (2012) propose to insert malicious processing functions into Android
system to handle intents as hackers’ will. Based on the idea, they successfully hack the
applications secured by mTANs, such as web-banking.

http://www.mbsd.jp/Whitepaper/IntentScheme.pdf
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8.5 Other performance bugs

Guo et al. (2013) developed a static analysis tool, Reldawhich detects energy and memory
leaks as well as the resources never being released. Liu et al. (2014) analyze 70 real per-
formance bugs from 8 Android applications and conclude three categories of performance
bugs (i.e., GUI lagging, memory bloat, energy leak). Additionally, the authors propose
PerfChecker, a static program analysis tool to identify two types of performance bugs:
lengthy operations in the UI thread and violations of the view holder pattern. Linares-
Vásquez et al. propose a taxonomy of practices and tools for detecting an fixing performance
bottlenecks based on the survey with 485 developers (Linares-Vásquez et al. 2015). Xu
et al. (2012); Zhang et al. (2012); Liu et al. (2014) leverages cost-benefit analysis to detect
whether an Android application uses sensory data in a cost-ineffective way.

STRICTMODE (http://developer.android.com/reference/android/os/StrictMode.html) is a
developer tool provides by Android that aims at finding blocking operations in main thread.
To reduce application latency, TANGO (Gordon et al. 2015) offloads some workload from
the smartphone to a remote server. TANGO replicates the application and executes it on
both the client and the server, and allows either replica to lead the execution. Similar with
TANGO, OUTATIME (Lee et al. 2015) performs game execution and rendering on remote
servers on behalf of thin clients that simply send input and display output frames. SMAR-
TIO (Nguyen et al. 2015) reduces the application delay by prioritizing reads over writes,
and grouping them based on assigned priorities.

In summary, our work differs from related studies in the following aspects

– We focus on the async construct, IntentService.
– We reveal that a lot of intents are unprotected from being manipulated by third-party

applications.
– We discover tens of critical vulnerabilities which have not been reported before. To the

best of our knowledge, our work is the first systematic study about hacking Android
system by exploiting IntentService.

9 Conclusion

To reduce application latency, Android provides asynchronous programming which enables
developers to put long-running tasks into background threads. This paper focuses on one
async construct, IntentService. Through static program analysis, our work finds
nearly one thousand unprotected intents which can be sent by third-party applications.
Moreover, we implement a tool which is able to attack a CPU by exploiting the unprotected
intents automatically. Furthermore, we discover tens of critical vulnerabilities that have not
been reported before.

We plan to extend our work from the following aspects. First, we are interested
in designing an automated approach to discover critical vulnerabilities like those in
Section 6. Second, we plan to conduct a similar systematic study on other Android ver-
sions, such as Android 7 (the newest version), Android 5 which still leads the market share
at 32% (Bandla http://www.gadgetdetail.com/android-version-market-share-distribution/).
Moreover, we plan to test ATUIN in different settings (e.g., different numbers of intents,
selecting different intents).

http://developer.android.com/reference/android/os/StrictMode.html
http://www.gadgetdetail.com/android-version-market-share-distribution/
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