
IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. XX, NO. X, XXXX 1

Interaction-Aware Vulnerability Detection in Smart
Contract Bytecodes

Wenkai Li, Xiaoqi Li, Yingjie Mao, Yuqing Zhang

Abstract—The detection of vulnerabilities in smart contracts
remains a significant challenge. While numerous tools are avail-
able for analyzing smart contracts in source code, only about
1.79% of smart contracts on Ethereum are open-source. For
existing tools that target bytecodes, most of them only consider
the semantic logic context and disregard function interface
information in the bytecodes. In this paper, we propose COBRA,
a novel framework that integrates semantic context and function
interfaces to detect vulnerabilities in bytecodes of the smart
contract. To our best knowledge, COBRA is the first framework
that combines these two features. Moreover, to infer the function
signatures that are not present in signature databases, we propose
SRIF, automatically learn the rules of function signatures from
the smart contract bytecodes. The bytecodes associated with the
function signatures are collected by constructing a control flow
graph (CFG) for the SRIF training. We optimize the semantic
context using the operation code in the static single assignment
(SSA) format. Finally, we integrate the context and function in-
terface representations in the latent space as the contract feature
embedding. The contract features in the hidden space are decoded
for vulnerability classifications with a decoder and attention
module. Experimental results demonstrate that SRIF can achieve
94.76% F1-score for function signature inference. Furthermore,
when the ground truth ABI exists, COBRA achieves 93.45%
F1-score for vulnerability classification. In the absence of ABI,
the inferred function feature fills the encoder, and the system
accomplishes an 89.46% recall rate.

Index Terms—Ethereum, Bytecode, Smart contract, Function
signature, Security

I. INTRODUCTION

Detecting vulnerabilities in smart contracts is a crucial
task in blockchain systems, which are distributed ledgers that
publicly record transactions. Until May 2024, there are about
66 million deployed contracts [2], while only around 1.19
million are open source to the public [3], accounting for
approximately 1.79% of the total. With the advent of the smart
contract layer, Ethereum has gained enhanced functionality.
However, as the use of smart contracts proliferates, numerous
fragile code snippets are exploited maliciously. For example,
the reentrancy vulnerability that led to a 3.6M ETH loss in

Wenkai Li, Xiaoqi Li, Yingjie Mao are with the School of Cy-
berspace Security, Hainan University, Haikou, 570228, China. E-mail:
cswkli@hainanu.edu.cn, csxqli@ieee.org, yingjiemao@hainanu.edu.cn;

Yuqing Zhang is with National Computer Network Intrusion Protection
Center, University of Chinese Academy of Sciences, Beijing, 100049, China.
E-mail: zhangyq@nipc.org.cn.

Corresponding author: Xiaoqi Li
This manuscript is an extended version of our work [1]. It has been extended

more than 40% over the ASE conference version, including: (1) Enhancement
of the analysis of the experiments (§ IV). (2) Addition of case analysis with
the exploits detected by our framework (§ IV). (3) Elaboration on the extensive
discussion of existing literature (§ V). (4) Optimization of the deeper analysis
of the detected vulnerabilities (§ V).

Fig. 1: Overview of Framework.

the DAO event [4], and the error of arithmetic that caused an
$80M loss in Compound Finance [5].

Previous studies have leveraged several dynamic and static
methods to detect contract vulnerabilities. Symbolic execution
(e.g., [6][7]), fuzz testing (e.g., [8][9]), and taint analysis
(e.g., [10]) are viable attempts for detecting smart contract
vulnerabilities. Moreover, they rely on the control flows
within functions to some extent. Symbolic execution leverages
formal methods to analyze all variables, including function
parameters, to calculate potential sequences of vulnerabilities
mathematically [6]. Fuzzing tests attempt to expose flaws in
the contract by using unreasonable inputs, but the presence
of function interfaces may diminish their effectiveness [8].
Taint analysis tracks and identifies whether tainted source
data will be maliciously processed to expose a vulnerability,
and functional interfaces can be the source of the taint [10].
Recent advancements in technology and the availability of
large datasets have given rise to new approaches, such as
machine learning, which has been used to analyze transactions
and accounts to detect Ponzi schemes (e.g., [11][12]), and
other vulnerabilities (e.g., [13][14][15]).

However, these tools utilized the semantic execution se-
quence of the source code. They do not prioritize the role
of function interfaces in their detection process, even when
analyzing bytecode. In addition, the source code of smart
contracts can be transformed into bytecode and application
binary interface (ABI) after compilation. Therefore, inspired
by the deployment and interactions of contracts, we jointly
learn the semantic features of contracts and the function
interfaces to detect malicious contracts.

In this paper, we propose COBRA, as demonstrated in Figure
1, a deep learning-based framework that first integrates seman-

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2025.3605773

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Hainan University. Downloaded on September 10,2025 at 01:02:50 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. XX, NO. X, XXXX 2

tic context and function interface for vulnerability detection.
As a sequence-to-sequence learning structure, the encoder in
COBRA consists of the following four key components:
Part (a): A semantic extraction process extracts the semantic
context in static single assignment (SSA) format, utilizing con-
trol flow graph (CFG) construction from bytecode contracts.
Part (b): A function signatures recovery component, which
contains the application binary interface (ABI), signatures
collection, and SRIF. SRIF first collects public signatures for
training, and then retrieves the undisclosed function interfaces.
Part (c): A path sequence construction function that concate-
nates semantics and function interfaces. Function interfaces
and properties are connected to form a function embedding.
Part (d): A model training component that learns the vulnera-
bility patterns from the semantic and function representations.

The main contributions of this paper are as follows:
● To the best of our knowledge, we are the first to propose

SRIF utilizing a seq2seq structure to extract function
parameters from the semantic context. Moreover, we infer
the function properties by counting particular Opcodes,
jointly mapping as a function feature (§ III-C, § III-D).

● As far as we know, we are the first to present COBRA
that integrates semantic context and function interface
features, generating an embedding of smart contracts. The
embedding is used to classify vulnerabilities (§ III-E).

● We integrate inferred function features and semantic in-
formation to discover vulnerabilities. Experimental results
show that over 94% F1-score can be implemented if raw
ABI is available, and over 89% recall can be achieved
with the inferred function feature (§ IV).

● We also open source some relevant datasets and codes at
https://figshare.com/articles/dataset/22313074.

As the extended version of the conference paper [1], the
following significant extensions are provided.
● We present the first empirical study of function pa-

rameter and compiler version distributions across the
Ethereum blockchain, while exploring SRIF’s detection
performance for diverse compiler environments.

● To evaluate the utilization degree of computing resources
by different models, we select LSTM, Transformer, and
BERT to analyze the neuron coverage rate, output accu-
racy, and model parameters. It is found that LSTM could
achieve a 6.95% point increase in accuracy with at least
8 times fewer parameters than Transformer and BERT.

● To explore the opcode distribution in the vulnerable
contract bytecode, we leverage COBRA to analyze the
opcode frequencies of 5 types of vulnerable contracts.
Specifically, we remove the invalid instructions that do
not concern data operations using SSA opcodes, enhanc-
ing the interpretability of the fragile contract bytecode.

The remainder of the paper is organized as follows. Section
II provides the background of the paper and Section III details
the implementation of COBRA. In Section IV, we show the
experimental results to demonstrate the effectiveness of our
proposed method. The discussion of COBRA is conducted in
Section V. Finally, we review related literature in Section VI
and conclude our work in Section VII.

1 contract Victim {
2 mapping(address => uint256) balances;
3 ...
4 function withdraw(address add, uint amount){
5 require(balances[add]>amount);
6 add.call.value(amount)();
7 balances[add] -= amount;
8 }
9 }

10 contract Attacker {
11 address victim;
12 function setAddr(address add) public{
13 victim = add
14 }
15 function attack() payable{
16 //deposit money on Victim with call operation
17 deposit_call(money)
18 victim.call(bytes4(keccak256("withdraw(

address add, uint amount)")), money/2);
19 }
20 //fallback function
21 function () payable{
22 //Reentrancy
23 victim.call(bytes4(keccak256("withdraw(

address add, uint amount)")), this.msg.
value);

24 }
25 }

Listing 1: The Simplified Snippets of a Malicious Interaction

II. MOTIVATION & BACKGROUND

A. Motivation

The targeted malicious interaction in this paper is shown in
Listing 1, providing an understandable source code format. In
the Solidity contracts, the attacker initially records the victim’s
address in the setAddr() function (line 12). The attack
starts at line 15, with the Attacker depositing funds into
the Victim contract and retrieving half via a call operation.
Since the call lacks a return function specification, execution
proceeds to the fallback function (line 21) without altering
the balances. Consequently, line 23 recursively retrieves
funds regardless of the check at line 5, resulting in an error
when the victim’s balance is insufficient. In this process, an
attack pattern exploiting vulnerabilities is automated into the
Attacker contract. It harnesses the call operation to interact
with compatible function interfaces, executing the attack logic.

Fig. 2: Deployment and Interaction of a Contract. The ①-④
represent the whole deployment process of a contract; the ⑤
and the return of ④ constitute an interactive process.

As Figure 2 illustrates, the smart contract source code
is compiled to produce bytecode and an application binary
interface (ABI). The ABI specifies the standardized format
for interactions with the contract, including information about
functions (e.g., type, name, input parameters, output parame-
ters, and properties). In the Ethereum virtual machine (EVM),

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2025.3605773

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Hainan University. Downloaded on September 10,2025 at 01:02:50 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. XX, NO. X, XXXX 3

a function selector identifies the function signature from vari-
ous functions based on the first four bytes of the CALLDATA.
After the contract is deployed on the blockchain, its address
is returned to the front end, which can then use the ABI to
call specific contracts.

B. Background

1) Smart Contract: As a Turing-complete language, smart
contract [16] is initially merged with blockchain in Ethereum.
Ethereum’s smart contract is compatible with various pro-
gramming languages, including Solidity, Rust, Vyper, etc. The
functional architecture permits smart contracts to communicate
with other contracts. The contract is the code deployed on
the blockchain, and the deployment process requires only a
single transaction containing the compiled code[17]. Notably,
it cannot be modified once the contract code has been released.
After deployment, smart contracts can be interacted with each
other by invoking with specified function signatures.

2) Ethereum Virtual Machine: The Ethereum virtual ma-
chine (EVM) is the execution environment for smart con-
tracts, and nodes in the network can be connected through
clients such as Geth [18]. EVM directly modifies the status
information in the state database (StateDB) when a user
account initiates a transfer request [19]. If an account submits
a transaction request, EVM examines the data field in the
message for a function entry to the contract based on the
function signature. The interpreter converts the bytecode in
StateDB to the Opcode to execute more advanced functionality
[20]. The EVM opcodes occupy the hexadecimal bits 0x00-
0xFF, with each byte containing only one opcode. These
instructions can operate all types of data, including stack
data (e.g., PUSH, POP), memory data (e.g., MSTORE, MLOAD),
storage data (e.g., SLOAD, SSTORE). Further, it can perform
arithmetic operations (e.g., ADD), jump the program counter
(e.g., JUMP), and so on [21]. Moreover, all operations adhere to
the gas mechanism [20]. Each Opcode necessitates a specific
quantity of gas to execute. When the required amount of gas
exceeds the threshold, the operation will be rolled back [21].

3) Function Signature: The function signature comprises
the function’s name and its arguments in the form of func-
tionName(param1, param2, ...). In the event of interactions
between contracts, functional signatures become crucial. Since
the function name can be defined arbitrarily, the function’s
behavior depends more on the number of arguments, the type
of arguments, and the function id than on its name. The
function id can be determined by applying the Keccak-256
hash algorithm [22] to the function prototype string [23] and
getting the first 4 bytes. Existing Function Signature libraries,
such as the Ethereum Function Signature Database (EFSD)
[24], are utilized to extract function ids for their function
parameter types and numbers. The function hash is stored in
the first four bits of the CALLDATA, and the called contract
retrieves which function is called by extracting the function
id. With the function hash in the CALLDATA, the EOAs or
contract accounts can invoke the bytecode contract through
the request from the front end.

4) Application Binary Interface: ABI is an interpreter de-
signed to facilitate communication between bytecode smart
contracts on EVM [8]. Since smart contracts are deployed with
bytecode format in Ethereum, ABI decodes bytecode contracts
into a human-readable language to facilitate interaction. Each
ABI produces the following five components, 1) function
types, 2) function names, 3) function input parameters, 4)
function output parameters, and 5) function properties. The
function types include constructor, fallback, and receive. In
Ethereum, the receive type identifies a send/receive function,
indicating that the function can receive and transfer Ether.
A contract may contain only one fallback function with no
parameters or return values. The fallback function is executed
when the call request is not sent to any function of a contract.
When a contract is created, its constructor function is called
to initialize its state.

C. Related Vulnerabilities

When smart contracts expand the programmability of
blockchain systems, security problems also increase. The
Decentralized Application Security Project (DASP) [25] is
a project classifying smart contract vulnerabilities based on
actual impact. In this paper, we will concentrate on five of
these vulnerabilities in Table I.

TABLE I: Related Vulnerabilities in DASP

Categories Alias

Reentrancy Vulnerability Recursive Call
Arithmetic Vulnerability Overflow, Underflow
Unchecked Low Level Calls Unchecked Send
Transaction Ordering Dependency Front-Running, TOCTOU
Time Manipulation Timestamp Dependency

A variety of works have been yielded for studying these
attacks in Table I [6], [26]. The reentrancy can be discovered
[4] when multiple recursive calls are made to withdraw as-
sets before updating the balance state. The integer overflow,
floating-point precision loss, and division by zero are all
arithmetic vulnerabilities. Developers risk compromising the
program’s security if they fail to verify the variables’ scope.
Unchecked low-level calls occur when the return values of the
calls are not effectively handled in the contract, resulting in
coin loss [27]. The Transaction Ordering Dependency (TOD)
is also know as Time-Of-Check vs Time-Of-Use (TOCTOU)
[28]. By giving higher gas, the miners were incentivized
to preempt other transactions, resulting in alterations to the
initial states of the contract. A time manipulation vulnera-
bility exists when a timestamp within a block is exploited
to trigger a security event. The smart contract has access to
the variables in block (e.g., timestamp, difficulty), the
block.timestamp can be modified to cause unexpected
issues when many contracts call it simultaneously [29].

D. Neuron Coverage

Neuron Coverage (NC) [30] quantifies the proportion of
activated neurons in a neural network when processing a given
test suite. Formally, it is defined as eq. (1),

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2025.3605773

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Hainan University. Downloaded on September 10,2025 at 01:02:50 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. XX, NO. X, XXXX 4

Fig. 3: The Architecture of Our Work. The dashed box represents the primary steps of the detection process. The inputs are
the bytecode smart contracts, and the output is a vulnerability report.

NC =
∣n ∈ N ∣∀i ∈ T,A(n, i) > θ∣

∣N ∣
(1)

where N denotes the complete set of neurons in the network,
T represents the collection of test inputs, A(n, i) indicates
the activation value of neuron n when processing input i, θ
is the predefined activation threshold. A neuron is considered
activated when its output value exceeds the specified threshold
θ for any given test input. The metric ranges from 0 to 1, with
higher values for a more complete neuron-level test coverage.

III. COBRA

In this section, we describe the primary methods taken to
implement our two-stage approach, as well as the vulnerability
detection model in Figure 3. As the input to our approach, the
bytecode smart contract performs the following steps: ❶ Con-
text Extraction, ❷ ABI Acquisition, ❸ Signatures Inference, ❹
Attributes Summarization, and ❺ Vulnerabilities Detection.

During operations in ❶-❷ or ❶-❸-❹, the dataset for detec-
tion model is processed. In step 1, the context information (i.e.,
Opcodes and SSA Opcodes) is extracted from the bytecode
smart contracts. In the meantime, we crawl Etherscan [31] for
its raw ABI data based on the address of the contract. If the
ABI information is collected, both the semantic information
and the ABI are represented as embedding, feeding our en-
coder module to obtain the contract’s hidden representation. If
the ABI data is absent, the steps ❸ and ❹ aim to infer the func-
tion signatures and attributes to recover the function features
in ABI based on semantical context. The function signature
includes the function name and parameters. More specifically,
since there are only finite function signatures in EFSD, also
known as 4BYTE, we propose the SRIF structure for inferring
function signatures of contracts. The ❺ is the vulnerabilities
detection module, where the COBRA with a novel encoder
was presented to combine the processed semantic context and
function representations of contracts. Finally, a bug report is
generated, which contains classifications of the vulnerabilities
in the bytecode smart contracts.

A. Context Extraction

We first extracted the Opcode in both original and SSA
format from the bytecode smart contracts. By decompiling
the bytecode with reverse engineering method [32], the Op-
codes of contracts without compilation error can be gathered.

Algorithm 1: Functions Context and Ids Acquisition
input : A deployed bytecode smart contract bc
output: two global map: functions context OpSeq, functions hashes

Ids

1 BasicBlocks, eb ← CFG.countBasicBlocks(EVMAsm(bc));
2 pushValue, prePushValue ← None;
3 Function getFuncInfo(block, entry):
4 foreach instruction i of the block.ins do Ops ← i;
5 if entry then
6 if end of block compatible with JUMPI then
7 Assert length of block.ins > 2;
8 dest ← oprand of block.ins[-2];
9 OpSeq[dest] ←getFuncInfo(BasicBlocks[dest],

false);
10 Ids[dest] ← None;
11 return Ops ;

12 for i in block.ins do
13 if i compatible with PUSHs then
14 prePushValue ← pushValue;
15 pushValue ← oprand of i;

16 if end of block compatible with JUMPI then
17 if prePushValue then
18 fnAddr, fnId ← pushValue, prePushValue;

19 else
20 fnAddr, fnId ← None;

21 if fnAddr compatible with BasicBlocks then
22 OpSeq[fnAddr] ← getFuncInfo(BasicBlocks[fnAddr],

false);
23 Ids[fnAddr] ← fnId;
24 if end of block compatible with JUMPI then
25 dest ← ((endPc ep of block) + 1);
26 OpSeq[dest] ← getFuncInfo(BasicBlocks[dest],

false);

27 return Ops ;

28 foreach entryBlock address eb of the BasicBlocks do
29 OpSeq[eb] ←getFuncInfo(BasicBlocks[eb], True);

SSA Opcode is an intermediate representation of Opcode
that preserves the semantic information by removing data
operations in the stack such as PUSH, POP, SWAP, and DUP
[33]. Then, we construct the CFG in the execution order to
obtain Opcodes. It entails separating the contract into basic
blocks by searching for instructions about the end of basic
blocks. For example, the Opcodes around jump (e.g., JUMP,
JUMPI), and others (e.g., STOP, SELFDESTRUCT, RETURN, RE-
VERT, INVALID, SUICIDE) will result in the stop of sequential
execution. The resultant basic blocks will execute sequentially,
beginning with the first instruction as the entry point and

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2025.3605773

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Hainan University. Downloaded on September 10,2025 at 01:02:50 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. XX, NO. X, XXXX 5

Fig. 4: The Label Distribution on the Ethereum Blockchain. The <M> and <N> are placeholders for a particular data length.
The x-scale represents the number of occurrences of the type, which is measured in log to prevent long-tailed effects in the
data plot. The y-scale is represented by all parameter types included in the statistics.

concluding with the last instruction as the outlet. The CFG is
completed by constructing edges between the blocks based on
the control flow. There are 3 types of basic block conversion,
including conditional jump (e.g., JUMPI), unconditional jump
(e.g., JUMP), and fall to next block. As a function block, the
execution block must be processed from its entry. In addition,
the function selector requires the block ending with JUMPI to
obtain the function hashes, identifying different functions.

In the Algorithm 1, the presence or absence of the final
instruction JUMPI is used to determine whether to proceed to
the following function in the program. With the CFG construc-
tion, the function hashes and Opcodes of each sequentially
executed function block are obtained. For each block, we
evaluate its eligibility as an entry for a function. Specifically,
on line 5, if the block is an entry and the end instruction is
JUMPI, we extract the next function id. The Opcodes of the
next function are then stored at OpSeq, and the address is the
key. At line 12, if not an entry, we retrieve the last two push
values pushValue, prePushValue within the block. On
line 17, if the block ends with a JUMPI, the pushValue and
prePushValue are used as the address and its hash value.

Furthermore, the precision of the EVM CFG builder [34]
is crucial to the accuracy of the data we collected. For this
reason, we keep an optimized EVM CFG recovery module in
Elysium [35] to gather data for model training. The method in
Elysium is proposed by [36] [37], which would extract more
precise CFGs in this module.

B. ABI Acquisition

Etherscan, an Ethereum blockchain browser, allows us to
crawl ABI information via contract addresses to examine

real-time information such as blocks, transactions, miners,
accounts, etc. Similarly to the accessibility of contracts, some
bytecode contracts do not make their ABI information publicly
available. To demonstrate this, we gathered 96,200 bytecode
contracts in block-number order, of which 15,026 ABIs are
available. Only 15.62% of these contracts have published ABI
information. Therefore, for these bytecode contracts that do
not disclose their ABI information, we propose an alternative
approach in § III-C and § III-D for obtaining the function
inputs and function attributes from the contracts. The format
of the ABI stored in the blockchain is JSON. To ensure com-
patibility with the following format for function parameters
and properties, we remove the function names.

Considering the label space of the function parameters, we
collect the function interfaces in the first two million blocks
on the Ethereum blockchain, and the number distribution of
each parameter type is summarized. As Figure 4 shows, we
only collected 17 types of parameters in total, and the address,
string, bool, bytes, and uint types appeared more frequently.

C. Signature Inference

This section focuses primarily on deducing function param-
eters information from the function context obtained in the
§ III-A. Although 4BYTE contains publicly available function
signatures, the library is incompatible with non-public func-
tion ids. In order to initially infer function parameters from
bytecode information, we employ a structure called SRIF.

In accordance with the architecture of the EVM, this stack
virtual machine does not store the runtime data, and the
function and data operations are embedded within the Opcode.
As described in § III-A, the function id would be saved in

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2025.3605773

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Hainan University. Downloaded on September 10,2025 at 01:02:50 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. XX, NO. X, XXXX 6

Fig. 5: The Signatures Inference Model, SRIF. The dashed boxes represent the encoder and decoder, which are connected by
an attention module.

the call data and transferred into the called function. Some
Opcodes can interact with call data, e.g., CALLDATALOAD,
CALLDATASIZE, and CALLDATACOPY. Simultaneously, these
data contain fixed rules for function parameter encapsulation,
which can be inferred using specific rules. For instance, over
30 rules were included in SIGREC [23] for deducing function
signatures from the bytecode of Solidity and Vyper. Such type-
specific inferring rules may be affected by Solidity’s version
iterations for variable types, and Solidity has experienced more
than 100+ released version updates over the past few years
[38]. Therefore, to achieve a more adaptable process to get
these input types in smart contracts, we utilize an encoder-
decoder framework in Figure 5 to infer function parameters
from the function context.

In § III-A, we have gathered the Opcodes of basic block
and function id for each function. Subsequently, we employ
CFGBuilder to establish the control flow graph (CFG) among
all basic blocks. A depth-first search (DFS) algorithm with a
designated depth was utilized to capture the sequence of con-
texts for all basic blocks within the function. We approached
the task of parameter prediction as a multi-label classification
(MLC) problem, considering the abundance of parameters and
label categories involved. As shown in Figure 4, because the
number of smart contract function parameter types is not high,
the label space explosion problem of MLC does not occur.

Given the labels L = {l1, l2, ..., lm}, the primary objective
is to generate the optimal sequence of label subset y∗ from
each sentence {w1,w2, ...,wn}. A subset s of m labels is con-
structed from L to x. The task can be defined as maximizing
P (y∣x), which can be computed by the following eq. (2).

P (y∣x) =
n

∏
i=1

p(yi∣y1, y2, ..., yi, x) (2)

In Figure 5, we take a context with n words w1,w2, ...,wn

as example. As input, the word format must be converted to
a machine-readable format. We collected possible words as
vocabulary ∣ν∣. Suppose i ∈ [0, n], where wi is converted to
a number, and then one-hot encoding is applied to wi. An
embedding matrix E ∈ Rk×∣ν∣ extends each encoded wi into
a k-dimensional embedding vector ei. Then the input context
can be expressed as c = {e1, e2, ..., en}.

To extract the semantic information of each word bidirec-
tionally, we adopt a recurrent neural network, LSTM [39], to
acquire the context word meaning and its semantic features.
The hidden state hi of each word embedding vector ei can be
obtained by computing eq. (3), where hi is the concatenation
of the hidden states from both directions, indicating the
ultimate representation of the i-th word.

hi = [
ÐÐÐÐ→
LSTM(

ÐÐ→
hi−1, ci);

←ÐÐÐÐ
LSTM(

←ÐÐ
hi−1, ci)] (3)

When invoking a function method, the number and sequence
of parameters must be correct. Therefore, it is necessary to
extract the correct number and order of labels from the original
sentence features. In addition, the attention mechanism can
identify valid words advantageous to the result from the input
sentence. To predict the classification from the hidden states
to the variable length, we employ a decoder module with an
attention mechanism. Specifically, the context feature vector
vt obtained from attention at time step t is calculated as the
eq. (4), eq. (5). Where wti is the weight of i-th word at t.
W T

a , Ua, Oa are determined during the training phase.

wti = softmax(W T
a tanh(Uast +Oahi)) (4)

vt =
n

∑
i=1

wtihi (5)

where st is the hidden state of decoder at t, which can be
defined as following eq. (6),

st = LSTM(st−1, [g(yt−1); vt−1]) (6)

where the g(yt−1) represents the label with the highest proba-
bility of distribution yt−1 at previous time step t− 1. Notably,
the probability distribution yt is generated by a liner layer
and a softmax function. Specifically, the hidden states are
transformed to the output size using a linear layer with an
activation function. The resulting output is then passed through
a softmax function to obtain the probability distribution yt.

In the training phase, we employ the focal loss function
[40]. In our multi-classification task, an imbalanced category
distribution may hinder the training process and prevent the
model from converging to the extremes. The focal loss func-

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2025.3605773

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Hainan University. Downloaded on September 10,2025 at 01:02:50 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. XX, NO. X, XXXX 7

tion was initially introduced for object detection tasks in
the computer vision domain, where identifying positive and
negative samples may present a wide disparity of difficulty.
The focal loss is calculated as eq. (7).

loss = −α(1 − pt)
γ log(pt) (7)

where the α controls the weight of positive and negative
samples on loss, while pt represents the probability of the
ground truth category. γ is also a parameter that controls the
value of (1 − pt) to reduce the model’s emphasis on easy-to-
classify samples close to the ground truth. We followed the
original assumption [40] that γ = 2 for focal loss. For the
value of α, we made a few minor adjustments so that each
class has a more balanced concentration. In eq. (8), the ni is
the number of types for the i-th parameter, 0 < i ≤ T , where
T is the total number of classes. The αi value for class i is
∑

T
j=0 nj/ni. Each αi is substituted for α to determine the loss

value of each class, and the average value is the total loss.

loss′ = ∑
n
i=0 −αi(1 − pt)

γ log(pt)

n
(8)

αi =
∑

T
j=0 nj

ni

(9)

D. Attributes Summarization

Additionally, we deduce the attributes (i.e., the state muta-
bility and payable) of functions in Solidity. State mutability
indicates whether the states of a function can be updated, i.e.,
functions that are neither pure nor view type. View functions
imply that the function state cannot be modified. Prior to
the Solidity 0.5.0 version, view functions were referred to as
constant. The payable property must be declared when a func-
tion transfers or receives Ether in Ethereum. To differentiate
these properties and apply them to vulnerability detection, we
classify them as constant, pure, and payable. According to
Table II, we summarize the Opcodes that can modify state
variables and transfer Ether. For each function, the context is
examined for state modification operations and call messages
with Ether. Consequently, the constant and payable properties
are inferred, respectively. In particular, functions declared as
pure neither modify nor read any state variables and, therefore,
consume no gas. Based on Ethereum gas consumption[21], we
get the Opcodes related to the pure property of functions.

TABLE II: The Table of States Operation Opcode

Checked
Attributes

Related
Behaviors

Analyzed
Opcodes

View Storage Modification SSTORE
Events Emitting LOG0, LOG1, LOG2,

LOG3, LOG4
Child Contract Cre-
ation

CREATE, CREATE2

Self-destruct SELFDESTRUCT
Low-level Calls CALL, CALLCODE,

DELEGATECALL
Payable Transaction in Assets CALLVALUE
Pure Gas Consumption STOP, RETURN, RE-

VERSE

The view function is not permitted to alter the state variable,
so we are supposed to identify statements that can modify the
state variable. In Table II, we focus on storage modification,
events emitting, child contract creation, self-destruct, and low-
level calls at the Opcode level. SSTORE first reads the key
and value from the stack and then writes the value at the
key address, which might overwrite the storage, modifying the
state variables of contracts. Moreover, the contract’s trans-
action information is saved in the state variable. When an
event is invoked, the arguments are written to the transaction
log, causing a change in the states. Thus, LOG0, LOG1,
LOG2, LOG3, LOG4 should be focused when emitting an
event with different topics, even if LOGs do not affect the
states. Additionally, creating or suiciding contracts will add
or remove the storage and code of the contract, which is
saved in the state variable. Hence, CREATE, CREATE2, and
SELFDESTRUCT are identified as modifying the state variable.
Furthermore, low-level calls (e.g., CALL, CALLCODE, and
DELEGATECALL) are not permitted in the view function, and
the STATICCALL Opcode is used to replace these calls, which
prohibits states modification.

The keyword payable is mandatory in any function that
involves asset transactions, where the type and amount of the
asset depend on the message. After the Solidity 0.5.2 version,
the CALLVALUE is used to obtain the value of the call.

The pure function cannot read or modify states. To ensure
that the function consumes no gas, we identify all Opcodes
that are disallowed in pure functions based on Ethereum’s gas
calculation. We exclude stack operations such as PUSH, POP,
SWAP, and DUP, leaving only STOP, RETURN, and REVERSE
as valid instructions for zero gas consumption [21].

E. Vulnerability Detection

In this subsection, the main structure of our detection model
will be presented. As Figure 6 shows, the raw bytecode
smart contract will first be processed by context extraction
(§ III-A), signature inference (§ III-C) and attributes sum-
marization (§ III-D). The sequence X = {x1, x2, ..., xn}

contains n Opcodes. Using the rattle tool [33], we convert
X to a SSA format S = {s1, s2, ..., sm}. Since the stack
operations are eliminated, and the Opcodes are arranged in
the order of execution, more precise semantic information can
be obtained. One-hot encoding is utilized to convert S into a
k-dimensional embedding, and then feed a Bi-GRU layer to
obtain the representations of the contract semantics in latent
space, h(j) = BiGRU(hj−1, sj), where 0 < j ≤ k. In Figure
6, the inferred function signature can be replaced with ABI
information. When the ABI data is retrieved, it is converted
into machine-readable form by looking up the vocabulary.
Convolutional neural network (CNN) and average pooling
layer transform the ABI into a function feature representation,
before concatenating semantic and function representations to
form the final feature representation of the contract.

If ABI cannot be obtained, we employ the method in
§ III-C to get the contract parameters for each function.
Variation in the dimension of function signatures is inevitable,
given multiple functions in each contract. Concurrently, the

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2025.3605773

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Hainan University. Downloaded on September 10,2025 at 01:02:50 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. XX, NO. X, XXXX 8

Fig. 6: The Encoder of our Detection Model. The bottom layer is the hex 2-gram representation of the bytecode smart contract,
which is converted into two types of data: the Opcode sequence and the function data. * indicates the part that can be replaced
with raw ABI information. The box with yellow dots at the top of the diagram reflects the representation in the latent space.

number of arguments varies, necessitating the alignment of
sequences with varying lengths. Assume that each func-
tion parameter prediction process has z associated param-
eter types T = {t1, t2, ..., tz}, and let Fi represent the i-
th sequence of functions ordered by the first basic block
address {typei1, type

i
2, ..., type

i
b}, containing a total of b ar-

guments. Finally, we concatenate the sequence of parameters
{attri1, attr

i
2, attr

i
3} for ap functions, where ap is the number

of functions in the contract. In order to get a representation
of the function signatures at the contract level, we cluster
the functions of each contract and then feed a CNN and
average pooling layer. The factor that selects CNN is to obtain
local feature vectors for signature data, and its convenience is
another factor in our task. Specifically, we use a lookup dict to
convert each parameter to a uniform numeric format and blank
padding to align these parameters from various functions.

Supposing that gij = typeij is the i-th function of j-th
parameter in contract X , where 0 < i ≤ ap,0 < j ≤ n. We first
feed them to several convolutional layers to get the features
of each function, G′i =W1[gi1, gi2, ..., gi(1+k−1);attri1, attr

i
2,

attri3] +b1 where the W1,b1 are the training parameters and
k represents the kernel size. To obtain the hidden features
among all the functions, MS-CAM [41] in Figure 7 is applied
to obtain the features in the certain dimension d1. MS-CAM
was originally proposed for integrating features with different
dimensions. We focus on the local features expressed by
a certain function and the global features expressed by all
functions. In this way, we can capture the related features
of the individual functions. The local feature representation
featurel can be expressed as the following eq. (10).

featurel = N(Conv2(ζ(N(Conv1(G))))) (10)

where G = {g1, g2..., gap}, N denotes the normalization layer,
Conv1 denotes shrinking the input sizes on dimension d1,
while Conv2 denotes expanding the size on d1 back to its
original size. ζ represents the ReLu activation function. The
global feature featureg and output are calculated as the
eq. (11), eq. (12).

featureg = GAP (featurel) (11)

output = G⊗ (ξ(featureg ⊕ featurel)) (12)

where the GAP represents a global average pooling layer, ⊗
means multiplication in the feature map, which is consistent
with the MS-CAM. ⊕ denotes addition after adjustment,
while broadcasting in MS-CAM. ξ represents the Sigmoid
activation function.

Then, a ReLu and a pooling layer are utilized to get
the feature representation of the function parameters and
attributes, G∗i = ReLU(G′i), G = Pool(G∗1,G

∗
2, ...,G

∗
ap).

Thus, the final feature representation of the contract X is
hx = [h(1), ..., h(k);G].

Following our model’s encoder, we obtain an implicit
feature representation hx incorporating contract semantic and
function signature information. To demonstrate the efficacy of
our encoder, we adopt the same architecture as the decoder of
SRIF model in § III-C. We employ an attention structure for
hx, and a recurrent neural network is fed to decode the hidden
states and identify the vulnerabilities. Moreover, since there is

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2025.3605773

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Hainan University. Downloaded on September 10,2025 at 01:02:50 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. XX, NO. X, XXXX 9

Fig. 7: The MS-CAM in Our Structure. ⊗ means multiplica-
tion, ⊕ denotes addition. The black dashed box represents the
global feature, and the red dashed box represents the local
feature.

no same label in each prediction, a mask mechanism is used
to get distinct results at different time steps. For example, if yj
has the highest probability at time step t − 1, the initial value
of a label yj is set to negative infinity at time t, and set the
initial value of all labels except yj to 0. To alleviate the class
imbalance problem in the multi-class detection task, we use
the focol loss function in the vulnerability detection process,
which has been introduced in eq. (8) in § III-C.

IV. EXPERIMENTS

In this section, we present the results of experiments to
evaluate the performance of our framework, answering the
following questions:
RQ1: Why the RNN is chosen for SRIF and COBRA?
RQ2: Is SRIF effective for the function signature inference?
RQ3: Will SRIF be affected by different compiler versions?
RQ4: Is COBRA effective for the vulnerability detection?
RQ5: Is ABI or function signature in COBRA effective?
RQ6: Can COBRA detect new bugs in the real world?

A. Experimental Setup

1) Datasets: To generate a labeled bytecode smart con-
tract dataset I with a sufficient amount of ground truth for
proper evaluation, we collect 13,948 deployed bytecode smart
contracts from the XBLOCK ETH dataset [42]. We use the
SMARTBUGS [43] framework to identify vulnerabilities in
these contracts and label them accordingly. Due to the fact that
each part of the tool has its own specialized vulnerabilities,
we utilize various state-of-the-art modules to collect as much
accurate ground truth data as possible. For instance, we utilize
the OYENTE to identify reentrancy, and MYTHRIL is main-
tained for arithmetic, unchecked low-level calls, and transac-
tion ordering dependency vulnerabilities detection. Especially,

the time manipulation is labeled by the CONKAS in SMART-
BUGS, which is renewed by the community. In addition, we
run each contract for a minimum of 30 minutes to ensure
maximum reliability. After filtering out contracts that can not
be detected due to version incompatibility and disassembly
errors, we have obtained 8,267 processed contracts with their
corresponding vulnerability labels.

Table III presents our dataset composition, comprising 790
analyzed contracts. Among these, we identified 790 instances
of reentrancy vulnerabilities, 4,609 instances of arithmetic
vulnerabilities, 1,764 cases of unchecked low-level calls, 1,351
transaction order dependencies, and 1,292 timing manipulation
issues. Notably, 7,190 contracts were found to be vulnerability-
free. The total amount of vulnerability exceeds the total
number of contracts because most vulnerable contracts contain
multiple different types of vulnerability.

TABLE III: The Label Distribution of the Dataset I.

Vulnerability Types Existing Amount

Reentrancy Vulnerability 790
Arithmetic Vulnerability 4,609

Unchecked Low Level Calls 1,764
Transaction Ordering Dependency 1,351

Time Manipulation 1,292
No Vulnerability 7,190

Another dataset II, also derived from XBLOCK ETH, con-
tains only contracts in bytecode format without vulnerability
labels. We collected a total of 6,024 contracts for the phase
of function signature inference. Using the function Opcodes
and hashes acquisition method described in § III-A, we
gathered the function ids present in these contracts. These
function signatures were then matched against the 4byte [24]
database. Finally, 99,745 function signatures, along with the
corresponding Opcodes, were collected.

2) Evaluation Metrics: We use F1-score, precision, and
recall as evaluation metrics. The precision is the likelihood of
each classification being accurately identified. Recall indicates
the probability of discovering all possible results. The F1-score
represents the harmonic mean of precision and recall.

3) Environments: Two experimental environments exist in
the whole experiments, (1) Intel(R) Xeon(R) W-2255 CPU +
256GB RAM + 2 × GeForce RTX 3090 with the operating
system of Windows Server 2019 and (2) Intel(R) Core(TM)
I7-12700 CPU and 32GB RAM with the system of Ubuntu
20.04. In (1), we labeled contracts with vulnerability classes
and trained models; in (2), we collected all bytecode smart
contracts used in our framework from the XBLOCK ETH.

B. RQ1: Why is the RNN chosen for SRIF and COBRA?

Motivation: The reason why we choose the LSTM rather than
other models (e.g., Transformer, and BERT) is (1) computa-
tional resource efficiency, and (2) robust handling of variable-
length sequences.
Approach: To comparatively assess model utilization effi-
ciency across identical data conditions, we evaluate neuron
coverage performance on the dataset described in § IV-A1.
Our experiments involve training 3 distinct architectures, i.e.,

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2025.3605773

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Hainan University. Downloaded on September 10,2025 at 01:02:50 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. XX, NO. X, XXXX 10

Transformer, BERT, and LSTM, on dataset II, followed by
coverage computation using the designated test partition. The
dataset is divided following a 60% : 40% training and test
ratio to ensure consistent evaluation conditions. Note that the
conventional notion of a ”neuron” requires careful interpre-
tation in RNNs, as these architectures generate vector-based
hidden states rather than discrete neuronal outputs [44]. Thus,
we conduct coverage analysis by examining the hidden state
vector at the testing layer. For Transformer and BERT, we
follow [45] setting the learning rate l = 0.0001, hidden size
h = 128, batch size β = 64, the number of attention heads
heads = 4, and the number of Transformer layers L = 4. We
set the threshold θ = 0 in the neuron coverage, which means
that all the neurons whose parameter value is not 0 are valid.

Fig. 8: The Neuron Coverage Comparison of Different Model
Types. The red color represents the experimental data of
the Transformer architecture, the blue color represents the
experimental data of the BERT architecture, and the green
color represents the experimental data of the LSTM. The three
dimensions NC, Accuracy, and 1/Params are neuron coverage,
accuracy, and the inverse of parameter amount, respectively.

Result: Figure 8 demonstrates the performance variations
across Transformer, BERT, and LSTM when evaluated along
three critical dimensions: neuron coverage (NC), detection
accuracy (Accuracy), and parameter efficiency (i.e., 1/Params).
LSTM achieves superior performance with 0.96 neuron cov-
erage and 95.08% detection accuracy, outperforming BERT’s
88.13% by 6.95 percentage points and Transformer’s 72.36%
by 22.72 percentage points. Furthermore, LSTM maintains
the performance advantage while demonstrating significantly
greater parameter efficiency 1/0.54M, exceeding BERT’s effi-
ciency 1/4.78M by over 8 times and Transformer’s 1/9.46M
by around 17.5 times. The experimental data shows that
LSTM can achieve better detection results with fewer model
parameters in our dataset and tasks.

Answer to RQ1. LSTM demonstrates superior neuron cov-
erage, detection accuracy, and parameter efficiency relative
to Transformer and BERT architectures.

C. RQ2: Is SRIF effective for the function signature inference?
Motivation: We first verify the effectiveness of SRIF on
function signature data. It serves as the foundational element
for ensuring the efficacy of COBRA.
Approach: To evaluate the effectiveness of various network
structures, we divide the dataset II into training, validation,
and test sets with proportions of 60%, 20%, and 20%, re-
spectively. After training, performance results from various

model structures are collected during validation, and the best
network structure is evaluated on the test set. Due to the
fact that each function call procedure is composed of distinct
basic blocks, the flow between each block is uncertain and
diverse, resulting in multiple branches. Therefore, we employ
the DFS algorithm to obtain the Opcode of each function in the
executing flow. To determine the optimal depth, we compare
the instances of 1, 2, and 3 depths, respectively. Furthermore,
we compare the SRIF with Gigahorse [46] on a subset of the
test set. The contracts are compiled manually in the Gigahorse
tool and their reverse recovered function signature results are
collected. It is worth noting that at this stage, we strictly
control the number and order of function parameters, and when
the number and order are inconsistent, we consider that the
function signature decision fails.
Result: We compare the LSTM, GRU cells, and different
depths in SRIF. According to the results in Table IV, the ideal
results are obtained when the depth is 1. In light of this result,
we presume that the information most relevant to function
parameters is stored in the first basic block of the function,
which is the location of the function entry. The results indicate
that the LSTM owns 95.46% F1-score, which has a more
favorable performance and is better suited for the stage of
function inference.

TABLE IV: The Results of Function Parameter Inference in
Different Depths and Cells with Focal Loss Function

Network Structures
Cells Max Depths F1-socre Precision Recall

GRU 3 93.19% 90.51% 96.04%
LSTM 3 95.23% 94.14% 96.36%
GRU 2 94.85% 93.75% 95.96%

LSTM 2 95.20% 93.99% 96.44%
GRU 1 95.18% 94.16% 96.23%

LSTM 1 95.46% 94.17% 96.78%

Furthermore, we use the cross entropy loss function for
training, obtaining the F1-score, precision, and recall rate of
94.46%, 93.81%, and 95.62%, respectively. Note that the cell
and depth are LSTM and 1 separately. The result reveals that
the focal loss function has a certain improvement effect than
the cross entropy loss function.

The model for function parameters inference consists of
540,771 parameters when LSTM and focal loss function is
employed. As Table V shows, SRIF can achieve 94.76% F1-
score, 93.49% precision, and 96.06% recall, which indicates
that it can achieve high performance in function signature
inference of smart contracts.

TABLE V: The Measures of Function Parameters Inference.

Metrics for Testing SRIF Performance

Test Precision 93.49%
Test Recall 96.06%
Test F1-Score 94.76%

Moreover, we randomly select 12 contracts (a total contain-
ing 120 functions) in the test set, comparing the SRIF with
the Gigahorse. Due to the problem of time consumption, only

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2025.3605773

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Hainan University. Downloaded on September 10,2025 at 01:02:50 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. XX, NO. X, XXXX 11

part of the contracts are selected in this paper. During the
selection, all the contracts in the test set are randomly shuffled
and divided into 12 equidistant intervals, and the contracts are
randomly selected from each interval. This sufficient random-
ness gives some validity to the results. In this process, we find
that Gigahorse can successfully recover 98 function signatures,
but SRIF successfully recovers 110 function signatures.

Answer to RQ2. The SRIF achieves 94.76% F1-score on
the test set, and it can recover more function signatures than
Gigahorse.

D. RQ3: Will SRIF be affected by different compiler versions?

Our evaluation of SRIF’s effectiveness utilizes a compre-
hensive dataset of unoptimized, open-source smart contracts
compiled across multiple Solidity versions. The dataset con-
struction leverages two key resources: (1) version metadata
from Etherscan [31] and (2) compilation verification through
the official EVM Solc compiler. From the initial two million
blockchain blocks, we extracted 13,948 reliability-focused
contracts. These represent 85 distinct Solidity compiler ver-
sions spanning v0.4.11 through v0.8.30.

Fig. 9: Performances of SRIF for Different Solidity Compiler
Versions. The blue bars represent the number of contracts
under different compiler versions, and the × indicates the
inferred accuracy under different compiler versions.

For each compiler version, we evaluate SRIF’s accuracy
performance. Figure 9 presents these results, sorted by Solidity
version in ascending order, along with the corresponding
number of contracts per version, ranging from 1 to 1750. Our
experimental results demonstrate SRIF’s robust performance
across all tested compiler versions. In the Solidity compilers,
the tool maintains consistently high accuracy, with no observed
case falling below 96% across all 85 versions. This finding
confirms that SRIF’s accuracy remains stable regardless of
compiler version evolution.

Answer to RQ3. The evaluation results indicate that SRIF
maintains stable performance across different compiler con-
figurations. It achieves consistent accuracy, with ≥96%
success rate for all 85 Solidity compiler versions tested.

E. RQ4: Is COBRA effective for the vulnerability detection?

Motivation: We evaluate COBRA’s ability to detect vulnera-
bilities in our collected dataset.
Approach: We utilize the dataset I, which contains 8,267
labeled contracts. We start by conducting comparisons among
various LSTMs, GRU cells, loss functions, and other tools
using the validation set. Subsequently, we assess COBRA’s
performance on the test set to derive the final evaluation
results. Additionally, we explore a scenario where only in-
ferred function signatures are accessible. The F1-score serves
as the metric, representing the harmonic mean of precision
and recall, thereby evaluating the COBRA, Mythril [43],
and MANDO-GURU [47]. The recall signifies the percentage
of identified malicious classes among the actual malicious
classes, evaluating when only inferred signatures are available.
Result: As Table VI shows, under the combination of context
and ABI, the GRU with focal loss function can achieve
the best F1-score (94.26%) in our evaluation. Notably, our
model can achieve even higher recall on cross-entropy. One
of the possible reasons is that the focal loss function in our
experiments might result in more training for the more chal-
lenging classes, reducing generalization for the simpler cat-
egories. Nevertheless, GRU can perform better than LSTM.
Furthermore, after we compare Mythril and MANDO-GURU
with COBRA, we find that COBRA can achieve the best
performance as shown in Table VII.

TABLE VI: The Performance Comparison of Different Cells
and Loss Functions.

Network Structures
Cells Loss Function F1-socre Precision Recall

LSTM Cross Entropy 92.38% 90.82% 94.01%
LSTM Focal Loss 87.96% 84.82% 90.49%
GRU Cross Entropy 93.17% 90.40% 96.13%
GRU Focal Loss 94.26% 93.12% 95.42%

TABLE VII: The Comparison Results of COBRA and SOTA.

Name F1-score

Mythril 65.57%
MANDO-GURU 91.06%
COBRA 94.26%

When combining context, the global features of ABI with
GRU, and the focal loss function, the model contains a total
of 3,130,115 parameters. In the test phase, the results in
Table VIII show that 93.45% of the F1-score, 91.56% of the
precision, and 95.42% of the recall score can be obtained.
Moreover, we utilize the SRIF with attributes summarization
method to generate alternative function information for con-
tracts that do not expose ABI. As a reminder, the method needs
to support the ability to discover as many vulnerabilities as
possible. Therefore, we take recall as the metric for detection.
After testing, Table VIII shows the recall can reach 89.46%.

Answer to RQ4. The COBRA achieves 93.45% F1-score on
the test set, and 94.26% F1-score on the validation, which
outperforms other methods.

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2025.3605773

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Hainan University. Downloaded on September 10,2025 at 01:02:50 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. XX, NO. X, XXXX 12

TABLE VIII: The Measures of Vulnerabilities Classification.

Metrics for Testing COBRA Performance

Test Reminder Recall 89.46%
Test Precision 91.56%
Test Recall 95.42%
Test F1-Score 93.45%

F. RQ5: Is ABI or function signature in COBRA effective?

Motivation: We conduct experiments to explore scenarios
where different function interfaces are available, i.e., appli-
cation binary interface (ABI) or function signatures.
Approach: To demonstrate that ABI information is valuable
for vulnerability detection, we summarize the case of distinct
contract semantics and the addition of ABI separately. The
experiments involved with ABI are conducted by the combi-
nation structure of LSTM with cross-entropy loss function.
Furthermore, regarding the function signatures, we make a
comparison of different network structures. When no public
ABI is available, inferred function signature representations
and semantic features are used as latent features of contracts.
Since we expect the COBRA with only function signatures
to discover as many malicious classes as possible, recall is
utilized to evaluate this situation.

TABLE IX: The Performance Comparison of Different Com-
posite Structures.

Network Structures F1-socre Precision Recall

Context 76.27% 70.21% 83.47%
Context + ABI 92.38% 90.82% 94.01%

Context + ABI + MS-CAM 92.14% 91.34% 92.96%

Result: Table IX summarizes the case of distinct contract
semantics and the addition of ABI separately. Note that all
the data in Table IX is done by the combination structure of
LSTM with cross-entropy loss function. Table IX provides
insight into numerous conclusions. First, general results can
be obtained using only context or SSA Opcode. The relatively
low precision indicates that the features cannot effectively
specify the vulnerabilities. In addition, after combining ABI,
we compared the different ABI features using the global
feature and the whole MS-CAM. The results presented indicate
that using only global feature extraction can improve F1-score
and recall, while MS-CAM can enhance precision.

TABLE X: The Comparison of Different Architectures for
Vulnerability Detection with Inferred Function Signatures.

LSTM GRU
Structures — MS-CAM — MS-CAM

Recall 87.79% 89.01% 89.78% 90.92%

As shown in Table X, the MS-CAM can obtain better
performance when combined with GRU, and the recall value
can increase to 90.92%. Therefore, it is evident from the results
in Table X that the combination of local and global features of
function features is more beneficial for vulnerability detection.
The GRU and modified MS-CAM can improve the detection.

Answer to RQ5. The ABI and function signatures can im-
prove COBRA’s detection performance to a certain degree.

G. RQ6: Can COBRA detect new bugs in the real world?

Motivation: We discuss the vulnerability detection capability
of COBRA and analyze the vulnerability we detected.
Approach: We test in Xblock-ETH except for the contracts
included in § IV-A1, which are detected using COBRA. These
contracts exist on the Ethereum mainnet. During this process,
COBRA uses GRU and focal loss function. When the ABI is
not publicly available, we add the MS-CAM module.
Result: We identify two previously undiscovered interac-
tive vulnerabilities (CVE-2023-36979 and CVE-2023-36980),
which can not be detected by Mythril, Oyente, and MANDO-
GURU. An illustration of a potential contract vulnerability is
presented in Listing 2, which could be exploited. The contract
depicts a casino game developed on the Ethereum blockchain.
The global variable instance Casino has the uint balance,
which ranges from 0 to 2256 − 1. If the user needs to play
the game, they need to store tokens into casino.balance
according to the casinoDeposit() function.

1 function casinoDeposit() {
2 if (msg.sender == casino.addr)
3 casino.balance += msg.value;
4 else
5 msg.sender.send(msg.value);
6 }
7 // Bet on Number
8 function betOnNumber(uint number) public returns

(string) {
9 // Input Handling

10 address addr = msg.sender;
11 uint betSize = msg.value;
12 if (betSize < casino.bettingLimitMin ||

betSize > casino.bettingLimitMax) {
13 // Return Funds
14 if (betSize >= 1*10**18)
15 addr.send(betSize);
16 return "Please choose an amount";
17 }
18 if (betSize * 36 > casino.balance) {
19 // Return Funds
20 addr.send(betSize);
21 return "Casino has insufficient funds";
22 }
23 if (number < 0 || number > 36) {
24 // Return Funds
25 addr.send(betSize);
26 return "Please choose a number";
27 }
28 // Roll the wheel
29 privSeed += 1;
30 uint rand = generateRand();
31 if (number == rand) {
32 uint winAmount = betSize * 36;
33 casino.balance -= (winAmount - betSize);
34 addr.send(winAmount);
35 return "Win!";
36 }
37 else {
38 casino.balance += betSize;
39 return "Wrong number.";
40 }
41 }

Listing 2: The Simplified Snippets of Casino

We can find that it only limits the situation of guessing
correctly, and when it is correct, the money can be withdrawn.
However, for the 35 lines of correct guessing at Listing 2,

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2025.3605773

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Hainan University. Downloaded on September 10,2025 at 01:02:50 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. XX, NO. X, XXXX 13

the send() is used to transfer the money amount. If the
transfer is not successful, it will only return false and will
not block execution, so the return value needs to be checked.
However, the owner does not check the return value in the
contract. Moreover, If the gas exceeds 2300, the transac-
tion will fail. But the fallback() function needs at least
2300. Therefore, if the attacker designs the contract to call
betOnNumber(uint number) using the call method in
an attack function, and then jumps to the fallback function
when the call ends. It causes the gas to exceed 2300, causing
the send() function to fail.
Impact: Based on CVSS (Common Vulnerability Scoring
System) assessments [48], the analyzed vulnerabilities are
categorized as medium-risk severity. As for CVE-2023-36979,
we will introduce the details in the § V-C. It originates
from improper authorization mechanisms in low-level call
operations, enabling malicious manipulation of the contract’s
balance state variable, which subsequently disrupts expected
payment distributions to users due to flawed contract logic.
Meanwhile, CVE-2023-36980 in Listing 2 stems from in-
sufficient validation checks on monetary-related parameters,
permitting unauthorized alteration of transfer values that ul-
timately result in permanent financial losses for contract par-
ticipants. Both security vulnerabilities demonstrate significant
financial implications by exposing user assets to substantial
risks of exploitation and irreversible damage.

Answer to RQ6. Utilizing COBRA, we find two previ-
ously undisclosed vulnerabilities, i.e., CVE-2023-36979 and
CVE-2023-36980.

V. DISCUSSION

A. Properties of COBRA

COBRA achieves high performance by combining func-
tional interfaces and contract semantics features. Compared
to other deep learning technologies, i.e., MANDO-GURU,
COBRA benefits from greater information features through its
function interfaces. In SRIF and COBRA, we use the RNN to
achieve the sequential dependency of opcode execution.

When learning the semantic features of a contract, both
SRIF and COBRA employ a bidirectional RNN structure to
apprehend the opcode sequence features stemming from the
sequential execution of a contract. In addition, SRIF uses
RNN architecture to sequentially decode the function interface
parameters. Given the relatively limited variety of function
parameters in Ethereum smart contracts, the label space during
decoding is not excessively vast.

The deep learning architecture implemented in both CO-
BRA and SRIF provides inherent extensibility for emerging
signature and vulnerability patterns. When novel categories
are identified, the system accommodates them through two
straightforward modifications: (1) incorporation of additional
training samples representing the new type, and (2) dynamic
adjustment of the focal loss α parameter at eq. (9) to maintain
appropriate class weighting based on updated vulnerability
frequency distributions.

B. Runtime Overhead

COBRA needs to obtain function interface information first,
and then integrate it with contract semantics.

When using ABI data exposure, this paper only needs to
input it into the model at the same time as the contract code,
which will not affect the time consumption of COBRA.

When the ABI data is not public, through the experiments
of § IV-C in this paper, the time taken by the SRIF model
to parse the function signature of a function is about 0.5667
seconds. This has a negligible impact on the time of the
model in this paper. Moreover, in our dataset, the length of
opcodes of several smart contracts exceeds 16,600. They are
quite complex, leading to over 30 minutes of analysis by the
symbolic execution tool Mythril. COBRA detected the entire
test set only took a few minutes, performing relatively better.
More importantly, the function-attribute interface summariza-
tion module can be determined to search for a fixed element
from a specified sequence, even if the time complexity of
the sequential search algorithm is linear O(n), and does not
consume too much time.

We compared the time consumption of Mythril, MANDO-
GURU, and COBRA in the test set, but the results had a huge
difference, so we did not intentionally record the data. We used
Mythril to analyze the test set, which took several hours. In
particular, when analyzing contracts with opcode lengths over
7300, it took almost ten minutes each. However, the COBRA
detected the entire test set only took a few minutes (with
fair CPU usage). It may be caused by the natural advantages
of deep learning, making the timing too different. For the
MANDO-GURU, a single contract takes several minutes (with
fair CPU usage).

C. Case Study

1) Arithmetic Vulnerability: In Figure 10, we present the
statistics of arithmetic vulnerabilities and summarize each
contract’s SSA Opcode by measuring dataset in [49][43].

Fig. 10: The Frequencies of SSA Opcodes in Arithmetic
Vulnerabilities

To identify the Opcodes associated with the arithmetic
vulnerability, we performed certain operations to eliminate the
Opcodes (e.g., CALLDATALOAD), which were almost present
in any contract. We examined the frequency of each Opcode
in each contract, dividing the total number of occurrences
by the total number of contracts. To eliminate the effect of
generic Opcodes, we select Opcodes with values close to
1, which can access data appearing in every weak contract.
Figure 10 illustrates that numerous data operation instructions

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2025.3605773

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Hainan University. Downloaded on September 10,2025 at 01:02:50 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. XX, NO. X, XXXX 14

(e.g., SUB, EQ, DIV, and LT) exist. We also collect input pa-
rameters for these functions. Considering that our framework
only detects integer overflows and underflows, we collect the
function parameters and attributes containing integer types.
Our function inference method demonstrates that 67.86%
of function contracts with integer-type parameters exist. In
the meantime, these functions are not view type, which has
included instructions for modifying the state variables (e.g.,
address.balance, block, tx, and msg).

1 contract Roulette {
2 uint ps;
3 struct Casino {
4 address addr;
5 uint balance;
6 }
7 Casino casino;
8 function bet(uint num) public {
9 address addr = msg.sender;

10 uint betSize = msg.value;
11 ps += 1;
12 uint rand = genRand();
13 uint randC = (rand + 1) % 2;
14 if (rand != 0 && (randC == num)) {
15 casino.balance -= betSize * 2;
16 addr.send(betSize * 2); }
17 else { casino.balance += betSize; }
18 }
19 function genRand() private returns (uint) {
20 ps = ((ps * 3 + 1) / 2) % 10 ** 9;
21 uint bn = block.number;
22 uint d = block.difficulty;
23 uint t = block.timestamp;
24 uint g = block.gaslimit;
25 uint rand = (ps + bn + d + t + g) % 37;
26 return rand;
27 }
28 }

Listing 3: The Simplified Snippets of Roulette

In Listing 3, we give an example of the arithmetic vulner-
ability that we detected. Lines 11 and 17 of the code exhibit
the potential for integer overflows, but we will focus on line
17 in this analysis. On line 3, a struct with an address and a
uint type is defined and stored in memory. The variables ps
and balance are unsigned integral numbers with a default
range of [0,2256−1]. The input parameter of the function bet
is a uint. When balance and betsize are out of range,
such as when the balance is 2256 − 1, even a betsize
of 1 can cause the casino instance to overflow, resulting in
significant economic loss. Furthermore, the overflow in line
11 causes ps to become zero, and as a result, its random
seeds can be deduced. As demonstrated in this example, it is
challenging to identify whether an overflow has occurred by
solely examining the SSA Opcode sequence. If the overflow in
the function does not modify the state, it may result in a logic
error without causing any direct economic loss. Therefore, our
approach incorporates function parameters and function state
types to determine whether a state operation occurs.

2) Time Manipulation Vulnerability: We have also identi-
fied another type of vulnerability in the contract in Listing
3, the time manipulation vulnerability. Despite the contract’s
reliance on extensive calculations to generate pseudo-random
numbers, malicious miners can obtain the block information,
including the timestamp, and disclose it to attackers. It may

enable attackers to derive the random numbers from the cal-
culation method in the source code and subsequently exhaust
tokens from the contract.

Fig. 11: The Frequencies of SSA Opcodes in Time Manipu-
lation Vulnerabilities

In Figure 11, we present a summarization of the SSA
Opcodes associated with the timestamp manipulation vulner-
ability. The Opcodes include TIMESTAMP, which indicates
that the contract accesses the block dependency of times-
tamp attribute; CALLDATALOAD, which retrieves the call data;
SSTORE, which stores data to storage; and DIV, which denotes
data manipulation. These instructions indicate that contracts
with these vulnerabilities are likely to read call data and
timestamp, process the data, and modify the storage. By
leveraging function properties, we can determine whether a
function tends to modify state variables. Furthermore, we
conducted a comprehensive analysis of all state variables. Our
findings indicate that 90.42% of contracts are not payable.
92.57% of the functions that contain the payable type modify
the state variables.

3) Unchecked Low-Level Call Vulnerability: Additionally,
we have distinguished unchecked low-level call vulnerabilities
in Listing 3. Specifically, on line 16, the contract’s transfer
method utilizes the send, which is considered a low-level
call. This approach sends tokens or ETHs to another contract
address and returns a boolean value indicating the success
or failure of the transaction. However, the contract does not
include any checks on the transaction status, which will
result in an incomplete or unsuccessful transaction. Although
the vulnerability in this contract does not directly affect the
balance of the contract, it can negatively impact users when
the contract does not send tokens or ETHs. Therefore, we
consider it to be a true positive case.

Fig. 12: The Frequencies of SSA Opcodes in Unchecked-Low-
Level Call Vulnerabilities

We conducted an analysis of Solidity assembly Opcodes
depicted in Figure 12 and found that the ADDRESS and BAL-
ANCE Opcodes are frequently utilized in these contracts with
unchecked-low-level calls. These Opcodes are instrumental in
capturing the address and balance of contracts, respectively,
and are often used in functions that read state variables.
Furthermore, we surveyed a significant disparity of over

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2025.3605773

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Hainan University. Downloaded on September 10,2025 at 01:02:50 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. XX, NO. X, XXXX 15

4.27 times between the number of payable and non-payable
functions in the analyzed contracts. Among payable functions,
54.68% have modified the state, while 45.32% have read state
variables. At the Opcode level, low-level calls in Solidity
can be categorized into three types: CALL, DELEGATECALL,
and CALLCODE. However, in the semantic context gathered
in the SSA format, DELEGATECALL and CALLCODE are not
frequently detected. Consequently, analyzing fragile contracts
containing such low-level calls (e.g., dangerous delegatecall)
would yield true negatives.

4) Transaction Ordering Dependency: Exploiting a trans-
action ordering dependency (TOD) vulnerability largely de-
pends on the execution order. When the vulnerability occurs,
indicating that the transaction is profitable, state variables
and balance-related operations may be shared between the
two transactions. Consequently, examining the SSTORE and
BALANCE Opcodes is necessary, as SSTORE stores the state
variables, and BALANCE retrieves the account’s balance. Line
14 of Listing 3 also reveals the possibility of TOD. If
transaction t1 wins the bet by transferring the correct value,
transaction t2 could front-run the t1. Mythril failed to identify
the TOD, which caused the report to be a false positive.

5) Reentrancy Vulnerability: As described at § IV-G, the
reentrancy vulnerability in our database shows a tendency.
In this issue, some operations, such as utilizing transfer and
send methods, require the payable type, which is associated
with the CALLVALUE instruction. Additionally, when using the
call.value, the attacker can access the target function’s
signature by utilizing the SHA3 instruction. Furthermore, an
examination of the reentrancy vulnerability reveals that certain
Opcodes, such as CALLER, are frequently utilized. Conse-
quently, as evidenced by the results depicted in Figure 13, it is
reasonable to conclude that msg.caller and msg.value
are commonly present in the vulnerable contract.

Fig. 13: The Frequencies of SSA Opcodes in Reentrancy
Vulnerabilities

An illustration of a potential contract vulnerability is pre-
sented in Listing 4, which could be exploited through reen-
trancy. Specifically, When tokens are sent to an address
without checking the balance, attackers can repeatedly call
the function and exhaust its resources. To address this is-
sue, protective measures, such as utilizing transfer and send
methods, require the payable type, which is associated with
the CALLVALUE instruction. Additionally, when using the
call.value function call, the attacker can access the tar-
get function’s signature by utilizing the SHA3 instruction.
Furthermore, an examination of the reentrancy vulnerability
reveals that certain Opcodes, such as CALLER, are frequently

utilized. Consequently, as evidenced by the results depicted in
Figure 13, it is reasonable to conclude that msg.caller and
msg.value are commonly present in the vulnerable contract.

1 contract PrivateBank {
2 mapping (address=>uint) public balances;
3 function CashOut(uint _am) {
4 if(_am<=balances[msg.sender]) {
5 if(msg.sender.call.value(_am)()){
6 balances[msg.sender] -= _am; }
7 }
8 }
9 }

Listing 4: The Simplified Snippets of PrivateBank

D. Limitations

This section describes the limitations of our research, which
is restricted by time, reverse engineering, and raw data.

1) Time: The two-stage framework is presented for detect-
ing vulnerabilities in bytecode-level smart contracts, which is
necessary due to the limited availability of ABI information.
In the presence of raw ABI data, we can extract the ABIs
from Etherscan, while in the absence of raw ABI data, we
employ the SRIF function to infer the function signatures and
properties of the contracts. However, this inferred data does
not contain the output parameters and types of functions. The
extraction of ABI, function parameters, and attributes must
be completed before the execution of COBRA, with function
parameters and attributes being inferred using the SRIF. As
a result, the construction of the framework requires a great
deal of time. We have taken the first step toward resolving
this issue by proposing a deep learning-based framework for
function signature inference. In the future, we will combine
this method with our encoder to build an end-to-end deep
learning framework for improved vulnerability detection.

2) Reverse Engineering: For the structure of SRIF and
COBRA, they both rely on reverse engineering of the EVM.
First, they might be affected by the accuracy of Opcode
acquisition. For Opcode, we use the PYEVMASM module to
facilitate integration development directly in Python program-
ming language. However, this module also results in a loss of
precision. It does not support all versions of SOLC, which
is the Solidity compiler in Ethereum. On the other hand,
SRIF also relies on CFG recovery in both original and SSA
format Opcodes. In our implementation, the CFG module in
EtherSolve is utilized for inferring more precise CFG, which
verifies whether the CFG contains unreachable basic blocks to
improve accuracy. Although we could improve the accuracy
of CFG and reduce the impact of noise to a certain extent,
the volume of data required for deep learning in SRIF and
COBRA is still substantial.

3) Raw Data: In the absence of raw ABI, our approach is
limited to providing alerting functionality only. In the 4byte
signature library, there are far more than 1 million unique
records. Nevertheless, according to our survey, only around
15.62% of 96,200 contracts are publicly available to ABI.
As the experiments (§ IV) demonstrated, even though our
function parameter inference method SRIF could achieve
relatively good results, there is still an apparent limitation in
vulnerability detection compared to the raw ABI. Therefore,

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2025.3605773

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Hainan University. Downloaded on September 10,2025 at 01:02:50 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. XX, NO. X, XXXX 16

we have a relatively reduced capacity for detecting contracts
that keep ABI private. However, as the recovery capability of
the function interface is optimized and the amount of ABI
disclosed increases, we would have a significant potential for
improving our approach.

E. Threat to Validity

Internal validity. The contracts in XBlock ETH are from
the Ethereum blockchain, where the ground truth labels for
function signatures are derived from 4bytes (See § IV-A1), col-
lected from real-world functions. Therefore, it is suitable for
evaluation. Additionally, COBRA relies on reverse engineering
the Ethereum virtual machine. For bytecode data, it needs
to be converted to an opcode sequence. However, there are
errors in the current method of obtaining opcode sequences,
and different versions of compilers will lead to accuracy loss.
Even some popular compiler tools such as pyevmasm [50]
do not support all versions, resulting in a lack of accuracy.
However, COBRA exploits an intermediate representation in
the SSA form and thus alleviates inaccurate translations of
opcode sequences. In addition, the EtherSolve tool [36] is used
in this paper to achieve the accurate construction of the CFG
graph to reduce invalid basic blocks in the recovery process.
External validity. SRIF has some randomness when compared
with Gigahorse. We split the test set into equal numbers
of groups and randomly selected contracts from each group,
ensuring as fair a comparison as possible.

F. Future Direction

This section outlines potential enhancements for subse-
quent research. First, our current implementation of SRIF
focuses solely on input parameters while excluding return
value specifications in function signatures. The ablation study
presented in §IV-E reveals that incorporating ABI output data
enhances vulnerability detection recall by approximately 2.06
percentage points. This finding motivates planned extensions
to integrate output parameter analysis into SRIF’s framework.
Second, while both SRIF and COBRA employ recurrent neural
network architectures for computational efficiency rather than
the Transformer-based models, the emergence of advanced
large language models (LLMs) presents new opportunities.
Future investigations will evaluate the feasibility of adapt-
ing state-of-the-art LLMs (e.g., GPT-4, Gemini, Claude) for
simultaneous function signature inference and vulnerability
identification, contingent upon overcoming current problems,
including computational constraints, model robustness, error
bounds, and explainability of predictions.

VI. RELATED WORK

A. Smart Contract Vulnerability Detection

Many state-of-the-art works based machine learning have
been presented for vulnerability detection [11][26][13][14][51]
[15][52][53][54][55][56][57][58][45][59][60], as the increas-
ing of smart contract bugs and machine learning technology.
Chen et al. [11] use machine learning methods to detect
Ponzi schemes. Ether flow graphs are constructed by an-
alyzing Opcode and account information, and features are

designed for classifying source code contracts. He et al. [26]
implement the fuzz function through the GRU module and
combine it with symbolic execution techniques to achieve
higher coverage. Gao et al. [13] transform the code into
an abstract syntax tree (AST) and then serialize the tree
based on the nodes. After learning the feature vector of the
sequence, the vector threshold is used to determine whether
the feature is a vulnerability. So et al. [14] collect enough
sequences of vulnerabilities through symbolic execution to
train a language model. The tool detects Ether leaking and
suicidal contracts in source code. Huang et al. [51] utilized an
unsupervised graph embedding algorithm to embed the sliced
CFG in the graph and then performed similarity calculations
on the sliced vectors. Sendner et al. [15] proposed ESCORT,
a multi-label detection tool that supports lightweight transfer
learning. Different from these above works, COBRA takes
the advantages of the function interface into account when
detecting vulnerabilities in smart contracts.

B. Function Signature Recovery

Different from Java Virtual Machine (JVM), EVM does not
retain function signature information in bytecode data. Call
data stores function parameters that can only be accessed via
particular processing. Numerous ways utilize these databases
to recover function signatures by developing parameter ac-
quisition procedures (e.g., Gigahorse [46], Eveem [61]). Gi-
gahorse introduces the ”CALLPRIVATE” directive to identify
private function calls. Eveem, utilizing symbolic execution
techniques, performs symbolic and algebraic computations of
the execution trace. When a layout containing offset and num
fields is found, it is regarded as an array. SigRec [23] searches
for call data in execution traces related to CALLDATACOPY
and CALLDATALOAD and creates specific inference rules to re-
cover various function signatures. Furthermore, there are also
methods for locating function information without establishing
rules (e.g., OSD [62], Neural-FEBI [63], and DeepInfer [64]).
Typically, OSD searches directly in EFSD [24] for function
hashes to discover function signatures. Neural-FEBI identifies
functions via a two-step process to get a more precise CFG.

VII. CONCLUSION

We present COBRA, a novel framework for detecting
vulnerabilities in Ethereum smart contracts at the bytecode
level. COBRA employs semantic and function interface fea-
tures for vulnerability detection. Additionally, we introduce the
SRIF, a function signature recovery technique that handles
cases where ABI is not disclosed. We also conduct minor
adjustments to MS-CAM to learn both global and local features
for functions in each contract. Our experiments demonstrate
that the SRIF can accurately and efficiently predict function
parameters, achieving a 94.76% F1-score on the dataset of
99,745 signatures. COBRA equipped with publicly available
ABI exhibit 93.45% F1-score in vulnerability detection. How-
ever, even without publicly available ABI, the recall rate
remains above 89%. Therefore, recovering ABI information
remains a crucial consideration, and further research into more
effective techniques is necessary.

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2025.3605773

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Hainan University. Downloaded on September 10,2025 at 01:02:50 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. XX, NO. X, XXXX 17

VIII. ACKNOWLEDGMENTS

This work is sponsored by the National Natural
Science Foundation of China (No.62362021 and
No.62402146), CCF-Tencent Rhino-Bird Open Research Fund
(No.RAGR20230115), and Hainan Provincial Department of
Education Project (No.HNJG2023-10).

REFERENCES

[1] W. Li, X. Li, Z. Li, and Y. Zhang, “Cobra: Interaction-aware bytecode-
level vulnerability detector for smart contracts,” in Proceedings of
the 39th IEEE/ACM International Conference on Automated Software
Engineering (ASE), 2024, pp. 1–12.

[2] Google, “Bigquery - ethereum dataset.” 2025. [On-
line]. Available: https://console.cloud.google.com/bigquery?p=
bigquery-public-data/&d=crypto/ ethereum/&page=dataset

[3] O. Martin and E. Shayan, “Smart contract sanctu-
ary.” 2025. [Online]. Available: https://github.com/tintinweb/
smart-contract-sanctuary-ethereum

[4] V. Buterin, “Critical update re: Dao vulnerability.”
2025. [Online]. Available: https://blog.ethereum.org/2016/06/17/
critical-update-re-dao-vulnerability

[5] B. Staff, “Compound finance mis-rewarded around $80m worth comp to
the users.” 2025. [Online]. Available: https://rekt.news/compound-rekt

[6] L. Luu, D.-H. Chu, H. Olickel, P. Saxena, and A. Hobor, “Making smart
contracts smarter.” in Proceedings of the ACM SIGSAC conference on
computer and communications security (CCS), 2016, pp. 254–269.

[7] M. Mossberg, F. Manzano, E. Hennenfent, A. Groce, G. Grieco, J. Feist,
and et al., “Manticore: A user-friendly symbolic execution framework
for binaries and smart contracts.” in Proceedings of the 34th IEEE/ACM
International Conference on Automated Software Engineering (ASE),
2019, pp. 1186–1189.

[8] B. Jiang, Y. Liu, and W. K. Chan, “Contractfuzzer: Fuzzing smart con-
tracts for vulnerability detection.” in Proceedings of the 33rd ACM/IEEE
International Conference on Automated Software Engineering (ASE),
2018, pp. 259–269.

[9] V. Wüstholz and M. Christakis, “Targeted greybox fuzzing with static
lookahead analysis.” in Proceedings of the ACM/IEEE 42nd Interna-
tional Conference on Software Engineering (ICSE), 2020, p. 789–800.

[10] M. Rodler, W. Li, G. O. Karame, and L. Davi, “Sereum: Protecting
existing smart contracts against re-entrancy attacks.” in Proceedings of
the Network and Distributed System Security Symposium (NDSS), 2018,
pp. 1–15.

[11] W. Chen, Z. Zheng, J. Cui, E. Ngai, P. Zheng, and Y. Zhou, “Detecting
ponzi schemes on ethereum: Towards healthier blockchain technology.”
in Proceedings of the World Wide Web Conference (WWW), 2018, pp.
1409–1418.

[12] H. Hu, Q. Bai, and Y. Xu, “Scsguard: Deep scam detection for ethereum
smart contracts.” in Proceedings of the IEEE Conference on Computer
Communications (INFOCOM), 2022, pp. 1–6.

[13] Z. Gao, “When deep learning meets smart contracts.” in Proceedings of
the 35th IEEE/ACM International Conference on Automated Software
Engineering (ASE), 2021, pp. 1400–1402.

[14] S. So, S. Hong, and H. Oh, “Smartest: Effectively hunting vulnerable
transaction sequences in smart contracts through language model-guided
symbolic execution.” in Proceedings of the 30th USENIX Security
Symposium (USENIX Security), 2021, pp. 1361–1378.

[15] C. Sendner, H. Chen, H. Fereidooni, L. Petzi, J. König, J. Stang, and
et al., “Smarter contracts: Detecting vulnerabilities in smart contracts
with deep transfer learning.” in Proceedings of the Network and Dis-
tributed System Security Symposium(NDSS), 2023, pp. 1–18.

[16] P. Bose, D. Das, Y. Chen, Y. Feng, C. Kruegel, and G. Vigna, “Sailfish:
Vetting smart contract state-inconsistency bugs in seconds.” in Proceed-
ings of the IEEE Symposium on Security and Privacy (SP), 2022, pp.
161–178.

[17] S. Steffen, B. Bichsel, and M. Vechev, “Zapper: Smart contracts with
data and identity privacy.” in Proceedings of the ACM SIGSAC Con-
ference on Computer and Communications Security (CCS), 2022, p.
2735–2749.

[18] S. Adam, S. Péter, and W. Jeffrey, “Go ethereum:official go
implementation of the ethereum protocol.” 2025. [Online]. Available:
https://geth.ethereum.org

[19] W. Chen, Z. Sun, H. Wang, X. Luo, H. Cai, and L. Wu, “Wasai:
Uncovering vulnerabilities in wasm smart contracts.” in Proceedings of
the 31st ACM SIGSOFT International Symposium on Software Testing
and Analys (ISSTA), 2022, pp. 703–715.

[20] A. Ghaleb, J. Rubin, and K. Pattabiraman, “etainter: Detecting gas-
related vulnerabilities in smart contracts.” in Proceedings of the 31st
ACM SIGSOFT International Symposium on Software Testing and
Analysis (ISSTA), 2022, pp. 728–739.

[21] G. Wood et al., “Ethereum: A secure decentralised generalised transac-
tion ledger.” Ethereum project yellow paper., vol. 151, no. 14, pp. 1–32,
2014.

[22] T. S. Authors, “Solidity documentation–contract abi specification.” 2025.
[Online]. Available: https://solidity.readthedocs.io/en/latest/abi-spec.
html

[23] T. Chen, Z. Li, X. Luo, X. Wang, T. Wang, Z. He, and et al., “Sigrec:
Automatic recovery of function signatures in smart contracts.” IEEE
Transactions on Software Engineering., vol. 48, no. 8, pp. 3066–3086,
2022.

[24] 4byte, “Ethereum signature database.” 2025. [Online]. Available:
https://www.4byte.directory

[25] N. Group, “First iteration of the decentralized application security
project top 10.” 2025. [Online]. Available: https://dasp.co/index.html

[26] J. He, M. Balunović, N. Ambroladze, P. Tsankov, and M. Vechev,
“Learning to fuzz from symbolic execution with application to smart
contracts.” in Proceedings of the ACM SIGSAC Conference on Computer
and Communications Security (CCS), 2019, pp. 531–548.

[27] J. Chen, X. Xia, D. Lo, J. Grundy, X. Luo, and T. Chen, “Defining
smart contract defects on ethereum.” IEEE Transactions on Software
Engineering., vol. 48, no. 1, pp. 327–345, 2022.

[28] N. Ivanov, Q. Yan, and A. Kompalli, “Txt: Real-time transaction
encapsulation for ethereum smart contracts.” IEEE Transactions on
Information Forensics and Security., vol. 18, pp. 1141–1155, 2023.

[29] D. Perez and B. Livshits, “Smart contract vulnerabilities: Vulnerable
does not imply exploited.” in Proceedings of the 30th USENIX Security
Symposium (USENIX Security), 2021, pp. 1325–1341.

[30] K. Pei, Y. Cao, J. Yang, and S. Jana, “Deepxplore: Automated whitebox
testing of deep learning systems,” in Proceedings of the 26th Symposium
on Operating Systems Principles (SOSP), 2017, pp. 1–18.

[31] Etherscan, “The ethereum blockchain explorer.” 2025. [Online].
Available: https://etherscan.io

[32] Crytic, “Pyevmasm’s documentation.” 2025. [Online]. Available:
https://pyevmasm.readthedocs.io/en/latest

[33] ——, “rattle.” 2025. [Online]. Available: https://github.com/crytic/rattle
[34] ——, “evm cfg builder.” 2025. [Online]. Available: https://github.com/

crytic/evm/ cfg/ builder
[35] C. Ferreira Torres, H. Jonker, and R. State, “Elysium: Context-aware

bytecode-level patching to automatically heal vulnerable smart con-
tracts.” in Proceedings of the 25th International Symposium on Research
in Attacks, Intrusions and Defense (RAID), 2022, pp. 115–128.

[36] F. Contro, M. Crosara, M. Ceccato, and M. D. Preda, “Ethersolve:
Computing an accurate control-flow graph from ethereum bytecode.”
in Proceedings of the IEEE/ACM 29th International Conference on
Program Comprehension (ICPC), 2021, pp. 127–137.

[37] A. Benini, M. Ceccato, F. Contro, M. Crosara, M. Dalla Preda, and
M. Pasqua, “Enhancing ethereum smart-contracts static analysis by
computing a precise control-flow graph of ethereum bytecode.” Journal
of Systems and Software., p. 111653, 2023.

[38] A. Beregszaszi, K. Śliwak, and et al., “Solidity releases.” 2025.
[Online]. Available: https://blog.soliditylang.org/category/releases

[39] S. Hochreiter and J. Schmidhuber, “Long short-term memory.” Neural
computation., vol. 9, no. 8, pp. 1735–1780, 1997.

[40] T.-Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollár, “Focal loss
for dense object detection.” in Proceedings of the IEEE International
Conference on Computer Vision (ICCV), 2017, pp. 2980–2988.

[41] Y. Dai, F. Gieseke, S. Oehmcke, Y. Wu, and K. Barnard, “Attentional
feature fusion.” in Proceedings of the IEEE/CVF Winter Conference on
Applications of Computer Vision (WACV), 2021, pp. 3559–3568.

[42] P. Zheng, Z. Zheng, J. Wu, and H.-N. Dai, “Xblock-eth: Extracting and
exploring blockchain data from ethereum.” IEEE Open Journal of the
Computer Society., vol. 1, pp. 95–106, 2020.

[43] T. Durieux, J. F. Ferreira, R. Abreu, and P. Cruz, “Empirical review
of automated analysis tools on 47,587 ethereum smart contracts.”
in Proceedings of the ACM/IEEE 42nd International Conference on
Software Engineering (ICSE), 2020, pp. 530–541.

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2025.3605773

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Hainan University. Downloaded on September 10,2025 at 01:02:50 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. XX, NO. X, XXXX 18

[44] W. Huang, Y. Sun, X. Zhao, J. Sharp, W. Ruan, J. Meng, and X. Huang,
“Coverage-guided testing for recurrent neural networks,” IEEE Trans-
actions on Reliability, vol. 71, no. 3, pp. 1191–1206, 2021.

[45] T. Wang, X. Zhao, and J. Zhang, “Tmf-net: Multimodal smart contract
vulnerability detection based on multiscale transformer fusion,” Infor-
mation Fusion, vol. 122, pp. 103 189–103 204, 2025.

[46] N. Grech, L. Brent, B. Scholz, and Y. Smaragdakis, “Gigahorse: Thor-
ough, declarative decompilation of smart contracts.” in Proceedings of
the IEEE/ACM 41st International Conference on Software Engineering
(ICSE), 2019, pp. 1176–1186.

[47] H. H. Nguyen, N.-M. Nguyen, H.-P. Doan, Z. Ahmadi, T.-N. Doan,
and L. Jiang, “Mando-guru: Vulnerability detection for smart contract
source code by heterogeneous graph embeddings,” in Proceedings of
the 30th ACM Joint European Software Engineering Conference and
Symposium on the Foundations of Software Engineering (ESEC/FSE),
2022, pp. 1736–1740.

[48] FIRST, “Common vulnerability scoring system,” 2025. [Online].
Available: https://www.first.org/cvss/

[49] Z. Liu, P. Qian, X. Wang, L. Zhu, Q. He, and S. Ji, “Smart contract
vulnerability detection: From pure neural network to interpretable graph
feature and expert pattern fusion.” in Proceedings of the Thirtieth
International Joint Conference on Artificial Intelligence (IJCAI), 2021,
pp. 2751–2759.

[50] Crytic, “Pyevmasm’s documentation.” 2025. [Online]. Available:
https://github.com/crytic

[51] J. Huang, S. Han, W. You, W. Shi, B. Liang, J. Wu, and et al., “Hunting
vulnerable smart contracts via graph embedding based bytecode match-
ing.” IEEE Transactions on Information Forensics and Security., vol. 16,
pp. 2144–2156, 2021.

[52] Q. Kong, J. Chen, Y. Wang, Z. Jiang, and Z. Zheng, “Defitainter: Detect-
ing price manipulation vulnerabilities in defi protocols,” in Proceedings
of the 32nd ACM SIGSOFT International Symposium on Software
Testing and Analys (ISSTA), 2023, pp. 531–548.

[53] Y. Liu, Y. Li, S.-W. Lin, and C. Artho, “Finding permission bugs in
smart contracts with role mining,” in Proceedings of the 31st ACM
SIGSOFT International Symposium on Software Testing and Analysis
(ISSTA), 2022, pp. 716–727.

[54] A. Ghaleb, J. Rubin, and K. Pattabiraman, “Achecker: Statically de-
tecting smart contract access control vulnerabilities,” in Proceedings of
the IEEE/ACM 45th International Conference on Software Engineering
(ICSE), 2023, pp. 1–12.

[55] Y. Chen, Z. Sun, Z. Gong, and D. Hao, “Improving smart contract
security with contrastive learning-based vulnerability detection,” in Pro-
ceedings of the IEEE/ACM 46th International Conference on Software
Engineering (ICSE), 2024, pp. 1–11.

[56] X. Wang, S. Tian, and W. Cui, “Contractcheck: checking ethereum
smart contracts in fine-grained level,” IEEE Transactions on Software
Engineering, vol. 50, no. 7, pp. 1789–1806, 2024.

[57] L. Chen, H. Wang, Y. Zhou, T. Wong, J. Wang, and C. Zhang,
“Smarttrans: Advanced similarity analysis for detecting vulnerabilities
in ethereum smart contracts,” IEEE Transactions on Dependable and
Secure Computing, 2025.

[58] C. Liu, Z. Sang, L. Duan, J. Wang, W. Ni, and W. Wang, “Anomaly
detection services for blockchain smart contracts with unknown vulnera-
bilities,” ACM Transactions on Software Engineering and Methodology,
2025.

[59] X. Xie, H. Wang, Z. Jian, Y. Fang, Z. Wang, and T. Li, “Block-
gram: Mining knowledgeable features for efficiently smart contract
vulnerability detection,” Digital Communications and Networks, vol. 11,
no. 1, pp. 1–12, 2025.

[60] Y. Huang, S. Fang, J. Li, B. Hu, J. Tao, and T. Zhang, “Deep smart
contract intent detection,” in Proceedings of the IEEE International Con-
ference on Software Analysis, Evolution and Reengineering (SANER),
2025, pp. 124–135.

[61] T. Kolinko, “Eveem/panoramix–showing contract sources.” 2025.
[Online]. Available: https://eveem.org

[62] Ethervm, “Online solidity decompiler.” 2025. [Online]. Available:
https://ethervm.io/decompile

[63] J. He, S. Li, X. Wang, S.-C. Cheung, G. Zhao, and J. Yang, “Neural-febi:
Accurate function identification in ethereum virtual machine bytecode.”
Journal of Systems and Software., vol. 199, p. 111627, 2023.

[64] K. Zhao, Z. Li, J. Li, H. Ye, X. Luo, and T. Chen, “Deepinfer: Deep
type inference from smart contract bytecode,” in Proceedings of the 31st
ACM Joint European Software Engineering Conference and Symposium
on the Foundations of Software Engineering (ESEC/FSE), 2023, pp.
745–757.

Wenkai Li is currently pursuing the doctor’s degree
in the School of Cyberspace Security at Hainan
University, China. Previously, he received a mas-
ter’s degree in the School of Cyberspace Security
at Hainan University. His research lies in smart
contract security and malicious behavior analysis,
focusing on enhancing blockchain security through
software and data analytics. He is also exploring the
integration of artificial intelligence, such as graph
neural networks and large language models.

Xiaoqi Li is an associate professor at Hainan Uni-
versity. Previously, he was a researcher at the Hong
Kong Polytechnic University. He received his Ph.D.
in Computer Science from Hong Kong Polytechnic
University, MSc in Information Security from the
Chinese Academy of Sciences, and BSc in Infor-
mation Security from Central South University. His
current research interests include Blockchain/Mo-
bile/System Security and Privacy, Ethereum/Smart
Contract, Software Engineering, and Static/Dynamic
Program Analysis. He received best paper awards

from INFOCOM’18, ISPEC’17, CCF’18, and an outstanding reviewer award
from FGCS’17.

Yingjie Mao is currently pursuing a master’s degree
in the School of Cyberspace Security at Hainan
University, China. Previously, he received a B.E.
degree from the Southwest University of Science and
Technology. His current research interests include
Blockchain Security/Privacy and Large Language
Model.

Yuqing Zhang is the Director of the Chinese Na-
tional Computer Network Intrusion Prevention Cen-
ter, Deputy Director of the Chinese National Engi-
neering Laboratory of Computer Virus Prevention
Technology, Vice Dean of the School of Computer
and Control Engineering at the Chinese Academy of
Sciences, and Professor at Hainan University. He re-
ceived his Ph.D. from Xi’an University of Electronic
Science and Technology. He has presented over
100 papers and 7 national/industry standards. His
current research interests include Network Attacks

and Prevention, Security Vulnerability Mining and Exploitation, IoT System
Security, AI Security, Data Security, and Privacy Protection.

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2025.3605773

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Hainan University. Downloaded on September 10,2025 at 01:02:50 UTC from IEEE Xplore. Restrictions apply.

