
IEEE TRANSACTIONS ON RELIABILITY 1

Guardians of the Ledger: Protecting Decentralized
Exchanges From State Derailment Defects

Zongwei Li , Wenkai Li , Xiaoqi Li , Member, IEEE, and Yuqing Zhang , Member, IEEE

Abstract—The decentralized exchange (DEX) leverages smart
contracts to trade digital assets for users on the blockchain. De-
velopers usually develop several smart contracts into one project,
implementing complex logic functions and multiple transaction
operations. However, the interaction among these contracts poses
challenges for developers analyzing the state logic. Due to the
complex state logic in DEX projects, many critical state derailment
defects have emerged in recent years. In this article, we conduct the
first systematic study of state derailment defects in DEX. We define
five categories of state derailment defects and provide detailed anal-
yses of them. Furthermore, we propose a novel deep learning-based
framework STATEGUARD for detecting state derailment defects in
DEX smart contracts. It leverages a smart contract deconstructor
to deconstruct the contract into an abstract syntax tree (AST), from
which five categories of dependency features are extracted. Next,
it implements a graph optimizer to process the structured data.
At last, the optimized data is analyzed by graph convolutional net-
works to identify potential state derailment defects. We evaluated
STATEGUARD through a dataset of 46 DEX projects containing 5671
smart contracts, and it achieved 94.25% F1-score. In addition, in
a comparison experiment with state-of-the-art, STATEGUARD leads
the F1-score by 6.29%. To further verify its practicality, we used
STATEGUARD to audit real-world contracts and successfully authen-
ticated multiple novel common vulnerabilities and exposures.

Index Terms—Decentralized exchange (DEX), deep learning,
defect, graph convolutional network (GCN), smart contract.

I. INTRODUCTION

THE decentralized exchanges (DEXs) play a crucial role in
decentralized finance (DeFi), enabling direct peer-to-peer

transactions without intermediaries [1]. Empowered by smart
contracts, DEXs facilitate direct interaction between market
participants, departing from the traditional reliance on interme-
diaries like centralized exchanges (CEXs) [2]. In contrast, DEX
leverages smart contracts to eliminate the central point of CEX,
implementing user-managed assets throughout the transaction
process. Thereby, it reduces risks associated with the central
exchange being hacked.

Received 30 August 2024; accepted 26 November 2024. This work was
supported by the National Natural Science Foundation of China under Grant
62402146 and Grant 62362021. Associate Editor: Y. Li. (Corresponding author:
Xiaoqi Li.)

Zongwei Li, Wenkai Li, and Xiaoqi Li are with the School of Cy-
berspace Security, Hainan University, Haikou 570228, China (e-mail:
lizw1017@gmail.com; liwenkai871@gmail.com; csxqli@gmail.com).

Yuqing Zhang is with the National Computer Network Intrusion Protection
Center, University of Chinese Academy of Sciences, Beijing 100049, China
(e-mail: zhangyq@nipc.org.cn).

Digital Object Identifier 10.1109/TR.2024.3509414

With the development of DeFi, DEX suffers from many
security issues. DEXs struggle with defects to various attacks,
including fund theft, market manipulation, and denial of ser-
vice [3]. For instance, the FixedFloat exchange was exploited
by an access control defect with the third-party infrastructure,
leading to around $26 million being stolen in February 2024 [4].

Several previous studies utilized different techniques (e.g.,
symbolic execution, data invariant detection, chain synchroniza-
tion) [5], [6], [7], [8], [9] to detect state inconsistency vulnerabil-
ities in DEXs. Geoffrey et al. [1] introduced SPEEDEX to com-
bat front-running attacks and enhance transaction parallelization
in CEXs. In a different approach, Duan et al. [10] developed
VetSC, a tool for automated security checks in decentralized
applications (DApps). Li et al. [11] proposed SolSaviour, a
framework for repairing flawed smart contracts. However, de-
spite these advancements, detecting, and mitigating state defects
in smart contracts remain challenging.

Challenge 1 (C1). Complex state logic: The blockchain-based
DEX project processes many transactions in a distributed man-
ner, and any related transaction can affect state information.
However, due to the complex state logic encapsulated within
the DEX contracts, state changes manipulated by an attacker
can lead to logic errors in an unpredictable manner. Its higher
complexity and interoperability challenge understanding and de-
tecting state changes caused by attacks and malicious behaviors.
This is because traditional methods have difficulty capturing
complex contracts’ structure and interactions when dealing with
DEX. They have difficulty in accurately understanding the state
changes between contracts.

Challenge 2 (C2). State derailment defects: State derailment
defects are distinct from other state defects [12] and are a specific
category of security defects in DEXs. Fig. 1 represents how
these defects can be exploited, resulting in state derailment.
These defects originate from various problems, including logical
inconsistencies, resource limitations, access control issues, type
and declaration errors, and inadequate exception handling.

State derailment and state inconsistency are critical concepts
in understanding the integrity and reliability of system states.
State derailment refers to aberrant state behavior where the sys-
tem deviates from its expected functionality due to unauthorized
alterations or erroneous state updates. This deviation can lead to
significant disruptions, such as unexpected contract behavior or
system failures, thereby compromising the system’s reliability
and predictability. For instance, a state derailment might occur if
a financial transaction system erroneously processes a payment

1558-1721 © 2024 IEEE. All rights reserved, including rights for text and data mining, and training of artificial intelligence and similar technologies.
Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Hainan University. Downloaded on December 20,2024 at 02:21:58 UTC from IEEE Xplore. Restrictions apply.

2 IEEE TRANSACTIONS ON RELIABILITY

Fig. 1. Illustration of malicious state modification.

due to an unauthorized state change, causing financial discrep-
ancies.

On the other hand, state inconsistency pertains to discrep-
ancies or conflicts between various replicas of the same state
at the data level. This issue arises when different users or
systems access different versions of the same state, leading to
a lack of uniformity and potentially causing confusion or errors
in decision-making processes. For example, in a distributed
database, state inconsistency might occur if one server shows
an account balance of $100 while another shows $150, leading
to conflicting information being presented to users. While state
derailment focuses on the deviation from expected behavior
due to incorrect state changes, state inconsistency highlights
the challenges of maintaining uniformity across multiple state
replicas.

Our solution: To address these challenges, we propose a
deep learning-based framework called STATEGUARD to analyze
complex state logic and detect state derailment defects in DEX
smart contracts.

Solution for C1: We propose a smart contract deconstructor
that can handle various versions of solidity and AST. It can de-
construct contracts on DEX into ASTs that are easier to analyze.
Moreover, it can adaptively extract critical dependency features
from the AST, obtaining structural and semantic characteristics
of the source code.

Solution for C2: After extracting the dependency features, we
integrate node attributes and critical paths to improve the graph
representation. This optimized graph was fed into a GCN model
to identify and learn defective features to detect state derailment
defects. The GCN not only handles the attribute information
of the nodes but also considers the connectivity relationships
between the nodes. With the advantages of GCN, STATEGUARD

can deeply understand the complex logic and state changes in
DEX smart contracts, providing more accurate analysis.

The main contributions of this article are as follows.
1) To the best of authors’ knowledge, we conduct the first

systematic study of state derailment defects in DEX con-
tracts. We define five kinds of state derailment defects,
which can lead to unauthorized or incorrect modifications
to the system state during the execution (Section III).

2) We propose STATEGUARD, a novel deep learning-based
framework for detecting and analyzing state defects in

DEX projects. It learns structural features from the ASTs
of DEX contracts and extracts dependent features to iden-
tify state derailment defects (Section IV).

3) We evaluated STATEGUARD on 46 DEX projects con-
taining 5671 smart contracts with 94.25% F1-score. We
also conducted a comparative analysis with state-of-the-
arts, with the advantages of 6.29% in F1-score. In ad-
dition, STATEGUARD has discovered multiple novel real-
world defects, e.g., common vulnerabilities and exposure
(CVE)-2023-{47033, 47034, 47035} (Section V).

4) We open source STATEGUARD’s codes and experimental
data at.1

II. BACKGROUND

A. Ethereum and Smart Contract

The rapid digitalization of society necessitates a secure, ef-
ficient, and transparent mechanism for data exchange. With its
unique, secure structure of chained data blocks, blockchain tech-
nology offers a promising solution. However, early blockchain
instances like Bitcoin have limited functionality. Ethereum [13],
introduced by Vitalik Buterin in 2013, addresses these limi-
tations by broadening the utility of blockchain through smart
contracts. These self-executing programs allow secure, trustless
transactions without intermediaries. Ethereum’s versatility has
led to the development of various DApps, such as those in DeFi,
providing users with transparent, secure, and fair services.

A diverse range of DApps, including DeFi applications and
DEX, can be developed on the Ethereum platform. These ap-
plications leverage the capabilities of smart contracts to furnish
users with equitable, transparent, and secure services. However,
Ethereum confronts several significant challenges. For instance,
due to Ethereum’s constrained computational capacity, a high
volume of transactions can precipitate network congestion, im-
pacting the user experience. Smart contract security is a concern
due to coding defects that may lead to financial losses [14].

B. Decentralized Application

DApp is an application that operates on a blockchain network,
free from control by any central authority or individual [15]. The
emergence of this application model offers users an exception-
ally secure, transparent, and efficient service platform, enhanc-
ing the security and reliability of data storage and transmission.
In DApp, users use the application via mobile devices or other
clients. They execute smart contracts, record transactions, and
verify them on the blockchain network. As depicted in Fig. 2,
this process guarantees the decentralization, immutability, and
transparency of transactions, embodying the core characteristics
of DApp.

The operation of a DApp significantly differs from that of
traditional internet applications. Traditional internet applica-
tions are governed and maintained by a central server, whereas
DApps operate in a decentralized network, with each network
node potentially serving as a service provider. This attribute

1[Online]. Avilable: https://figshare.com/s/f44e1399dca60b3672f9

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Hainan University. Downloaded on December 20,2024 at 02:21:58 UTC from IEEE Xplore. Restrictions apply.

LI et al.: GUARDIANS OF THE LEDGER: PROTECTING DECENTRALIZED EXCHANGES FROM STATE DERAILMENT DEFECTS 3

Fig. 2. Simplified process of DApp transaction requests.

renders the entire system more stable and immune to the damage
inflicted by any single node. Leveraging blockchain technology,
DApps can ensure data integrity and immutability, significantly
bolstering user trust. DApp projects exhibit increased complex-
ity, interoperability, and scalability requirements, thus neces-
sitating greater attention during deployment and management.
The development of DApps also confronts challenges, including
ensuring application performance, managing a large volume
of transactions, and preserving user privacy [16]. However,
ongoing advancement and refinement in blockchain technology
are anticipated to resolve these issues. In summary, DApps
constitute a novel application model. Their emergence furnishes
us with a more secure, transparent, and efficient service platform,
offering boundless possibilities for future application develop-
ment [15].

III. STATE DERAILMENT DEFECTS

In this section, we collect relevant data and define derailment
defects.

A. Data Collection

We utilize the DAppSCAN [17], an open-source dataset of
smart contract defects that contains 25 077 smart contracts from
1139 DApp projects. Considering the financial implications of
defects in exchange-type DApps, our study focuses on 46 DApp
projects, including 5671 smart contracts.

1) Security Analysis Report: We are thoroughly analyzing
1311 security audit reports from 30 specialized entities. Our
analysis identifies a category of defects that we refer to as
state derailment defects. These defects occur when essential
functions fail to maintain the contract’s state. Reports frequently
underscore how the outcomes of these functions can affect the
contract’s state but also reveal cases where they either fail to op-
erate as anticipated or are compromised by other functions. We
comprehensively investigate smart contracts with these defects,
involving a manual review, rigorous analysis, and experimental
evaluation. The audit reports are sourced from entities, such as
ChainSecurity [18], runtime verification [19], Quantstamp [20],
and Smartdec [21].

2) Data Analysis and Processing: We select DEX projects
from the DAppSCAN dataset and exhaustively analyze their
corresponding audit reports to mark contracts for defects by
cross-referencing them. When dealing with DEX-type smart
contracts, we find that these contracts are often complex to
compile directly. This is mainly because DEX contracts involve
complex transaction logic and dependency on other contracts
or libraries. Different solidity versions in one DApp project can
cause compilation failures, so it is essential to have strategies for
accommodating varying contract versions. In order to compile
and process these smart contracts efficiently, we manually pro-
cess part of the code to ensure that it does not break the original
code logic.

Dependency analysis: Before compilation, we analyze the de-
pendencies of the smart contracts in the DEX project. It involves
identifying the specific versions of contracts and dependency
libraries that the contracts depend on. While compiling, we
obtain these dependencies and verify the version compatibility
to ensure that the source code can be compiled successfully.
Specifically, we would need to supplement the missing depen-
dency libraries manually in some special cases.

Version compatibility: There is a situation where different
smart contracts in the same project could have multiple solidity
versions. Therefore, it is necessary to match these smart con-
tracts with the compatible compiler version of solidity.

Syntax and functional compatibility: Due to syntactic and
functional differences between versions, there will also be dis-
crepant in dependencies, constructors, etc. Therefore, while
modifying dependencies, we would make adjustments to the
contracts to ensure compatibility. Annotation, during the ad-
justment process, we do not modify the original semantics and
ensure that it is consistent with the defects in the annotation.

B. Defects Definition

In blockchain and smart contract development, safeguard-
ing contract state integrity is critical [22]. State derailment
defects constitute a specific category of security defects in
smart contracts. Smart contract execution can sometimes result
in defects caused by logical inconsistency, design problems,
and resource limitations. These defects can cause unauthorized,
incorrect, or incomplete updates, changes, or accesses to the
system state. Such defects could impact the functionality of
a smart contract and may lead to abnormal system operation
or exploitation by a malicious user, posing a significant threat
to system security [23]. In smart contracts, the state refers to
the stored information or variables representing a contract’s
current state or status at any given moment. Examples of this
data may include account balances, ownership details, or any
other relevant information the contract may need to execute its
functions properly.

Subsequently, we will dissect five defect categories, exam-
ining their roots and potential hazards. Each defect signifies a
unique smart contract state issue, highlighting the necessity to
comprehend and mitigate these for improved contract security.

1) Logical Inconsistencies: Logical inconsistencies in the
context of smart contracts refer to a mismatch between the

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Hainan University. Downloaded on December 20,2024 at 02:21:58 UTC from IEEE Xplore. Restrictions apply.

4 IEEE TRANSACTIONS ON RELIABILITY

Fig. 3. Example of logical inconsistency defect.

Fig. 4. Example of resource constraint defect.

actual logic of the contract code and the designer’s expectations
or intentions, and this inconsistency usually stems from errors,
omissions, or defects in the code implementation [24]. It may
manifest itself in incorrect updates to the contract state, feature
implementations that do not match business requirements, the
creation of security vulnerabilities, or incompatibility with other
contracts or blockchain platform standards [25]. This affects the
correctness and security of the contract and can lead to loss of
assets or failure of contract functionality.

Example: Fig. 3 displays a smart contract withdrawal func-
tion. The function neglects to verify the return value of the
transfer function, which can cause state derailment if the token
transfer operation fails but the contract continues executing
subsequent operations. This could compromise the system’s
functionality, leading to user fund losses or the contract’s
inability to execute the anticipated logic accurately.

2) Resource Constraints: Resource constraints are a series
of blockchain resource parameters that constrain the execution
of smart contracts, including gas (execution cost), storage space,
network bandwidth, and block time [26]. These constraints
have a significant impact on the execution of smart contracts.
Developers must consider these constraints when writing smart
contracts to optimize code, reduce resource consumption, and
improve execution efficiency. If a smart contract cannot be
completed due to resource constraints, its state may be impaired,
affecting its ability to fulfill its obligations.

Example: In Fig. 4, the algorithm aims to remove a speci-
fied pool address from an associative array cataloging all pool
addresses. The code checks for the pool address’s existence,
removes it from the mapping and sets its array value to 0 × 0.
Notably, the code risks state derailment due to potential gas
overconsumption during array traversal for large-scale arrays.

Fig. 5. Example of access control defect.

Fig. 6. Example of type and declaration error defect.

3) Access Control: Access control is a critical mechanism
in smart contracts, which defines which users can access or
modify the data in the contract, thus protecting the security of
the contract [27]. By accurately setting access rights, access
control ensures that only authorized users or participants can
operate on contract data, preventing unauthorized access or
modification and maintaining the integrity and security of the
contract state. However, there is negligence or error in the design
or configuration of the access control mechanism. In that case,
it may result in unauthorized users or participants being able
to modify the contract data, thus triggering problems with the
contract state and affecting the normal execution and security of
the contract [28].

Example: Fig. 5 exhibits a function handling airdrop claims.
It authenticates the claimant’s proof and initiates the asset trans-
fer upon successful validation. However, the function neglects
to set alreadyClaimed[msg.sender] to true. This flag
prevents users from repeatedly claiming airdrops, but incorrect
settings allow for multiple claims, creating security, and abuse
issues.

4) Type and Declaration Errors: Type and declaration errors
are defects caused by improper variable declarations or incorrect
type checking during smart contract development. Such errors
are usually detected during the compilation phase, but they can
also affect the behavior of the contract at runtime, leading to un-
expected state changes. This reduces the security and reliability
of smart contracts and exposes them to a high risk of external
threats.

Example: Fig. 6 shows a token lock-up contract with a private
function called sendTokens for sending tokens. Before sending
the tokens, the code checks if the balance of tokens in the contract
address is sufficient to send the specified amount of tokens.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Hainan University. Downloaded on December 20,2024 at 02:21:58 UTC from IEEE Xplore. Restrictions apply.

LI et al.: GUARDIANS OF THE LEDGER: PROTECTING DECENTRALIZED EXCHANGES FROM STATE DERAILMENT DEFECTS 5

Fig. 7. Example of exception handling defect.

However, there is a potential defect in this code. The function
updates a local variable vestAmount, but not the contract’s public
variable of the same name, which could lead to inconsistencies
in the contract’s state.

5) Exception Handling: In smart contracts, exception han-
dling is a programming mechanism designed to identify and
respond to errors or unintended input data during contract
execution. By capturing and handling these exceptions, smart
contracts can avoid financial losses, contract malfunctions, state
update failures, and even security breaches caused by program-
ming errors or improper external inputs, ensuring the stable
operation of the contract and the security of the data.

Example: In the code shown in Fig. 7, if an er-
ror occurs while executing super.approve(_spender,
_value), it might result in the entire function failing, perhaps
leading to the rejection of the entire transaction, which may lead
to a denial-of-service attack. Implement robust error handling
and fault-tolerance mechanisms to ensure the consistency and
integrity of smart contracts.

In essence, state derailment defects exhibit a tendency toward
project failures caused by state errors. It underscores vulnera-
bilities where specific actions lead to the illegal modification of
the system’s state.

IV. METHOD

In this section, we introduce the principles of STATEGUARD,
which achieves a contract deconstructor and graph optimizer to
detect state derailment defects.

A. Overview

According to Fig. 8, the overall architecture of our approach
consists of the following three stages.

1) Smart contract deconstructor (Section IV-B): In this stage,
we convert the contracts with different versions into AST
in JSON format. It adaptively extracts the contract’s de-
pendency to reveal the structural and semantic features of
contracts.

2) Graph Optimizer (Section IV-C): In this stage, we integrate
node attributes, dynamically identifies and optimizes, and
critical dependency paths. Simultaneously, it decomposes
contracts into several subgraphs. Subsequently, it trans-
forms these features from subgraphs into a standardized
data format.

3) Defect Detection (Section IV-D): In this stage, we feed
the standardized data into a GCN for learning potential

Fig. 8. Data processing workflow of StateGuard.

patterns and features of the graph, and finally identifying
the defects.

B. Smart Contract Deconstructor

Smart contract deconstructor is designed to process and ana-
lyze smart contract code in DEX. It supports different versions of
smart contracts and can handle single-contract and multicontract
projects. The core functionality of the smart contract decon-
structor is to convert complex smart contract source code into
an easy-to-understand and analyze AST representation and then
adaptively identify and extract critical features that significantly
impact the contract state.

To improve clarity, we will now break down the process into
simpler steps, as follows.

Parsing the smart contract: The source code of the smart
contract is parsed to generate an AST.

Handling different versions: The generated AST might have
different formats depending on the solidity version. The decon-
structor adapts to these differences to ensure consistency.

Extracting features: Critical features that impact the contract
state are identified and extracted from the AST.

1) Abstract Syntax Tree: AST is a popular program repre-
sentation paradigm, effectively encapsulating the semantic rela-
tionships between program components [29]. It is a hierarchical
tree structure that represents the source code’s architecture,
where each node represents a discrete program segment, includ-
ing functions, declarations, or expressions. This representation
makes it straightforward to analyze and understand the relation-
ships between different parts of the code, such as function calls,
variable declarations, and control flow constructs. By clearly
visualizing these relationships, we can more easily pinpoint
where issues might arise.

ASTs provide multiple abstraction layers—ranging from
high-level constructs (e.g., functions, loops) to lower-level
details (e.g., expressions, operators). This layered abstraction

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Hainan University. Downloaded on December 20,2024 at 02:21:58 UTC from IEEE Xplore. Restrictions apply.

6 IEEE TRANSACTIONS ON RELIABILITY

Fig. 9. Example of smart contract source codes’ AST.

allows for more granular analysis. For instance, higher level
patterns may reveal function-level issues, while lower level
patterns can expose intricate bugs in arithmetic operations
or conditional statements. Research by Curtis J [30] has
proven that converting programs into ASTs that preserve
the semantic relationships of program elements allows for
better understanding and manipulation of program logic than
bytecode. Inspired by this, we convert smart contracts into
ASTs and use this structure to perform in-depth analyzes to
detect possible security risks and facilitate code optimization.

Fig. 9 shows a source code fragment and the corresponding
AST. The tree’s root node represents an entire smart contract
or function, each internal node represents a statement or ex-
pression, and the leaf nodes represent variables, constants, or
other basic elements. The AST can represent the types of the
various nodes in the tree and their corresponding parts in the
source code. Examples include function calls and assignment
statements. The tree’s depth can indicate the code’s complexity,
while the number of branches in the tree represents the number
of decision points in the code. ASTs allow us to manipulate the
source code at a high level. This manipulability is essential for
tasks like feature extraction and graph optimization, making the
detection process more efficient.

When we use solc to compile different versions of solidity
smart contracts to generate ASTs, the format of the generated
ASTs varies due to the significant differences between solidity
versions. For example, in version 0.6 of the AST, the syntax
element of a node is identified in the name field, while in version
0.8 of the AST, it is identified in the nodeType field. In addition,
there is a difference in how child nodes are represented. To
overcome this challenge, we analyze the AST format. Despite
the formatting differences, each node has a unique id attribute,
and its children are always in an array. Therefore, we look for
an array in the current node to determine if a child node exists.
Then, we check whether the id attribute is present in this array.

When determining the relationship between nodes, we should
follow the following guidelines.

1) Nodes within the same hierarchy (i.e., nodes in the same
array) are considered siblings.

2) A node in a hierarchy is considered a child of the nearest
node in the previous hierarchy (current hierarchy minus
one). In other words, if a node is located in a particular
level, its parent should be the nearest node in the previous
level.

2) Feature Extraction: The syntactic features of defect code
can be depicted by suitable data structures, which enable us to
fetch source code snippets that match these features [31]. We
can identify places with security risks by understanding and
analyzing how nodes are connected. Therefore, by traversing
the AST, we extract critical features, such as control and data
dependencies and assign different roles to different nodes to
construct the contract graph. Specifically, we defined five types
of critical dependency features based on the syntax elements of
solidity.

To clarify, here are the types of critical dependency features.
Declaration dependency: Variable and constant declaration

nodes can represent input, output, and state variables in the
code. In contrast, function and method declaration nodes can
represent the functionality and operations of the smart contract.
Discrepancies here can disrupt state updates, leading to potential
state derailment.

Expression dependency: Syntax and expression nodes encap-
sulate the logic and computation. The occurrence of defects
could interrupt state updates, resulting in state derailment.

Control dependency: Control dependency nodes define the
execution flow of a program, and these operations play an
essential role in state management and state changes. Therefore,
they are usually highly relevant to defect detection tasks.

Data dependency: Data dependency refers to the dependence
of certain program parts on the state or output of other parts.
Understanding and tracking data dependencies is critical in
identifying and preventing potential security defects.

Function Dependency: Function dependency refers to the
possibility that the behavior of a function may depend on other
functions. The main focus is on the relationship between func-
tions and how others influence the behavior of one function.

By extracting these critical dependency features from the
AST, we provide the necessary structured information for sub-
sequent dynamic path identification and graph representation
simplification.

C. Graph Optimizer

Most graph neural networks do not consider the important role
that specific nodes play in the network during the information
transfer process and instead treat all nodes equally. In addition,
the complexity of interactions between DEX contracts leads to
the generation of overly large and dense graph representations,
which increases the computational complexity and, thus, poses
a challenge to the training of graph neural networks. Therefore,
to address these issues, we propose a graph optimizer that
optimizes the graph representation through, for example, graph
attribute integration and dynamic critical path identification
to better deal with the performance bottleneck when multiple
contracts are encountered.

1) Graph Attribute Integration: An AST is a tree structure
representing the source code’s abstract syntactic structure. We
can construct a directed acyclic graph from the extracted node
information by traversing the AST. A graphical structure rep-
resents the features extracted from the AST, further enabling
complex relationships between features.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Hainan University. Downloaded on December 20,2024 at 02:21:58 UTC from IEEE Xplore. Restrictions apply.

LI et al.: GUARDIANS OF THE LEDGER: PROTECTING DECENTRALIZED EXCHANGES FROM STATE DERAILMENT DEFECTS 7

Node attribute integration: The importance of node building is
that it gives a detailed picture of the network structure, reflecting
the relationships between individual nodes. This is important for
detecting specific defects because understanding and analyzing
how nodes are connected can more accurately identify where
security risks may exist. For example, if a node has direct
connections to numerous other nodes, it could be a prime target
for an attack. Attribute information, such as id, name, type,
and value of each node is extracted by the smart contract
deconstructor. This attribute information is integrated into the
node as a node characteristic.

Specifically, we create a set of labels L to store critical
dependencies, which can help us focus on and analyze the
necessary nodes for executing defect detection tasks. In addition
to node extraction, we preserve node attributes, defined as a
tuple (Nid, Nn, Nt, Nv), denoted as w, where Nid represents
the unique id of the node in the syntax tree, Nn represents
the name of the node, Nt represents the type of the node,
and Nv represents possible values that may exist for the node.
This attribute provides a straightforward representation of data,
facilitating efficient operations and ensuring immutability.

Edge attribute integration: We further construct edges to
model the relationships between nodes. Each directed edge
represents a possible traversal path between nodes. Specifically,
the features of an edge are extracted as a tuple (Es, Ee, Et),
whereEs andEe denote its start and end nodes, respectively, and
Et denotes the type of the edge. Such a construction encapsulates
the critical information concisely and clearly, which is easy to
manipulate and analyze.

2) Graph optimization strategy: After completing the decon-
struction of the smart contract, we identify the critical depen-
dency features in the contract and then dynamically analyze
the key nodes of the contract and the call relationships between
functions. We focus on analyzing those paths with critical depen-
dency features while selectively ignoring those edge paths. By
optimizing the dynamically identified critical paths, we simplify
the graphical representation by retaining only the critical nodes
and connecting edges.

Precisely, our graph optimization process, shown in Fig. 8,
consists mainly of removing nodes and edges that do not belong
to a predefined list of specific labels, as well as graph simpli-
fication by reducing the graph size. We define a specific list of
labels L and remove all nodes and edges that do not belong
to labels in L. In addition, we further simplify and reduce the
size of the graph by traversing the graph and removing specific
nodes to improve the processing efficiency. The process of graph
optimization can be summarized in the following steps.

1) For each node i in the graph, if its label li is not in the list
of specific labels L, then it is removed, i.e., the optimized
set of nodes V ′ = {i | li ∈ L} is obtained.

2) Performs a depth-first traversal of the optimized set of
nodes V ′ to establish parent–child relationships between
nodes and to remove the ineligible nodes. Specifically, we
define parenti as the parent of node i and visited as the set
of visited nodes.

3) For each node i in the setV ′, if its label li is not in the list of
specific labels L and its parent parenti is not null and has

Algorithm 1: Source Code to Normalized Data.
1: procedure SOURCETOGRAPH(source_file)
2: AST ← Parse(source_file)
3: word2idx,M ← Preprocess(AST)
4: A,N, V ←

ASTtoAdjMatrixAndDict(AST,word2idx)
5: G← OptimizeGraph(A,N, V)
6: G′ ← Normalize(G)
7: return G′

8: end procedure
9: procedure

ASTTOADJMATRIXANDDICT(AST,word2idx)
10: A,N, V ← Initializeemptymatrixanddictionaries
11: for each node in AST do
12: wi ← node.attributes
13: xi ←M [:, word2idx(wi)]
14: V [i]← xi

15: for each neighbor in node.neighbors do
16: A[i, word2idx(neighbor.label)]← 1
17: N [i]← neighbor
18: end for
19: end for
20: return A,N, V
21: end procedure
22: procedure OPTIMIZEGRAPH(A,N, V)
23: V ′ ← RemoveNodesAndEdges(A,N, V)
24: G← DFSAndRemove(V ′)
25: return G
26: end procedure
27: procedure NORMALIZE(G)
28: G′ ← ApplyTransformations(G)
29: return G′

30: end procedure

been visited (i.e., it is in visited). If the node i has no child
node j, then the node i and its connection edge (parenti, i)
with its parent parenti are removed. If node i has child
j, remove node i, and its connecting edges (parenti, i)
and (i, j) with its parent parenti and child j, and set the
parent of j to parenti and create a new connecting edge
(parenti, j)with its key children inherit to the parent node.

Through the abovementioned steps, we use the optimized
set of nodes and edges as the set of nodes and edges
of the final optimized graph. Furthermore, for multicon-
tract projects in DEX, we first identify the nodes that in-
teract between different contracts (i.e., function dependency)
and represent these contracts as subgraphs. We then merge
these subgraphs into a complete graph. Doing so enables
the graph to represent critical dependencies more centrally,
thus improving the accuracy (ACC) and efficiency of defect
detection.

3) Graph Embedding: Word2Vec [32] is a neural network
language model that can transform text data into vector format by
learning semantic relationships between words. These vectors
can provide valuable inputs for various deep-learning tasks,

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Hainan University. Downloaded on December 20,2024 at 02:21:58 UTC from IEEE Xplore. Restrictions apply.

8 IEEE TRANSACTIONS ON RELIABILITY

including text classification, sentiment analysis, and information
retrieval. We convert each graph into adjacency matrices and
dictionaries, with node labels as feature vectors. We map node
labels into feature vectors by employing the word2idx [33]
dictionary and an embedding matrix M . The vector represen-
tation of each node i is vi = Eword2idx(li). The topology of a
graph G = (V,E) is depicted using an adjacency matrix A.
For each node i, an adjacency dictionary Ni is constructed
to denote its directly adjacent nodes. In node representation
learning, we aim to derive each node’s representation vector hi,
mapping each node’s feature vector to the representation space
via a nonlinear transformation, hi = f(Xi). This process is
crucial to processing graph data, enhancing its applicability and
efficiency.

4) Graph Normalization: The trimmed node and edge sets
form the refined graph, which is then normalized. Each node
attribute wi is associated with a feature vector xi and further
processed to normalized vectors zi. Algorithm 1 outlines the
process of source code to normalized data.

The normalized data, including node lists, edge lists, node
features, and graph labels, are readied for ensuing deep-learning
tasks. Internode relationships are preserved in an edge list
E ′ = {(i, j)|Aij = 1, i, j ∈ V ′}. Each node’s id is stored in a
list G′ = {gi|i ∈ V ′}. Node labels, features, and graph labels
are preserved in corresponding lists. The adjacency matrix and
dictionary encapsulate the graph’s connections. Significantly,
we have developed an automated tool to convert source code
into normalized data, so the entire process is fully automated.

D. Defect Detection Based on GCN

When dealing with graphical data, the normalized data can
act as the input for GCN. GCN [34] is a crucial algorithm
for processing graph-structured data, learning, and generating
vector representations of nodes by iteratively propagating node
features. The key design principles behind our GCN-based
approach are as follows:

Graph representation of smart contracts: We represent smart
contracts as graphs, where nodes represent syntactic constructs
and edges represent syntactic relationships between these con-
structs. This allows us to leverage GCN’s ability to process
graph-structured data effectively.

Local connectivity and feature aggregation: GCN excel at
capturing local neighborhood information in graphs. By itera-
tively aggregating information from neighboring nodes, GCN
can build rich representations of node contexts, capturing
semantics derived from both local and global structures.

Hierarchical information propagation: By stacking multiple
convolutional layers, GCN can capture hierarchical informa-
tion effectively. Each layer captures higher level semantics by
combining information from lower level layers, providing a
comprehensive understanding of the smart contract code. As
shown in Fig. 10, the GCN-based approach effectively captures
hierarchical information through multiple convolutional layers.
GCN learns node representations by propagating node features
in the form of

H(l+1) = σ(D̂−
1
2 ÂD̂−

1
2H(l)W (l)). (1)

Fig. 10. Graph convolutional neural network.

Each layer utilizes the normalized adjacency matrix with self-
loops Â and the diagonal matrix of degree plus self-loops D̂ to
propagate node features. Equation (1) updates the node feature
matrixH(l+1) by multiplying the weight matrixW (l) and apply-
ing the activation function σ. It can be interpreted as weighting
the sum of node features and the features of its neighboring
nodes and then performing a nonlinear transformation through
the activation function.

The output prediction employs the softmax function (2) to
make predictions by multiplying the node feature H(L) of the
last layer with the weight matrix W (L). We can calculate it as
following (2):

ŷi = softmax (H(L)W (L)) (2)

where L indicates the last layer and ŷi denotes the predicted
result.

In order to improve the model’s performance, we use the back-
propagation algorithm [35] along with an optimizer to update
the model’s parameters. For binary classification problems, the
cross-entropy loss function can be used to gauge the difference
between the predicted output and the actual label. The model is
optimized by minimizing this loss function as following (3):

Loss = − 1

N

N∑
i=1

[
yi log(ŷi) + (1− yi) log(1− ŷi)

]
(3)

where yi represents the actual label of the sample i and ŷi is the
model’s prediction for the sample i.

V. EXPERIMENT

In this section, we conduct a series of experiments, to evaluate
the effectiveness of STATEGUARD.

A. Experimental Settings

All experiments are executed on a Ubuntu server 22.04 LTS
equipped with NVIDIA GeForce GTX 4070Ti GPU, Intel Core
i9-13900KF CPU, and 128 G RAM. The software environment
includes Python 3.9 and PyTorch 2.0.1.

Regarding the model configuration, we utilize a three-layer
GCN, set the adaptive learning rate, and choose the ReLU
function as the activation function. During model training, we
use cross-entropy as the loss function and Adam as the opti-
mization algorithm. We use 90% of the dataset for training and

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Hainan University. Downloaded on December 20,2024 at 02:21:58 UTC from IEEE Xplore. Restrictions apply.

LI et al.: GUARDIANS OF THE LEDGER: PROTECTING DECENTRALIZED EXCHANGES FROM STATE DERAILMENT DEFECTS 9

TABLE I
COLLECTED DATASET FOR OUR EVALUATION

TABLE II
PERFORMANCE METRICS OF STATEGUARD

the remaining 10% for validation. In order to comprehensively
evaluate the performance of the model on the test set, we select
ACC, recall, precision, F1-score, and false positive rate (FPR)
as the evaluation metrics.

Specifically, ACC is the ratio of correct predictions to total
instances. Recall measures how many actual positives we cap-
ture. Precision reflects how many positives are truly positive.
F1-score balances Precision and Recall. FPR indicates how
often negatives are incorrectly identified as positive.

1) Dataset: We use the publicly available DAppSCAN
dataset [17] to build a comprehensive dataset critical for identify-
ing and analyzing defects in DApp projects. The dataset includes
703 DApp projects, totalling 23 637 smart contracts, and is
continuously updated. We selected 46 DEX projects for analysis,
which include a total of 5671 smart contracts. In addition, we col-
lected 1311 security analysis reports from 30 companies or orga-
nizations conducting security audits of blockchain technology,
smart contracts, and cryptocurrency projects. We thoroughly
analyzed the defects in these reports, cross-referencing them
with smart contracts for our experimental purposes. We also used
another publicly available dataset, Smartbugs [36], a traditional
smart contract dataset containing 4285 smart contracts. Table I
shows the number of smart contracts we used, containing both
vulnerable and benign contracts.

Evaluation metrics: The effectiveness of STATEGUARD is
evaluated based on the following research questions (RQs).

RQ1: Is STATEGUARD capable of accurately identifying state
derailment defects in the public dataset?

RQ2: Can STATEGUARD find state-related defects unde-
tectable by other tools? How does it compare with
existing tools?

RQ3: Can STATEGUARD effectively detect defects in
real-world contracts?

B. Answer to RQ1: Defects Detection in a Large-Scale Dataset

To address RQ1, we conduct experiments on 5671 smart
contracts from DAppSCAN. We use 90% of these for train-
ing and the remaining 10% for testing. The experimen-
tal results presented in Table II depict the performance of
STATEGUARD, including ACC, recall, precision, F1-score, and
FPR. STATEGUARD only identifies whether the contract contains
a defect, so we only count it once even if the defect occurs

multiple times. As illustrated in Table II, these results substanti-
ate the superior performance of STATEGUARD in detecting state
derailment defects.

The experimental outcomes demonstrate the efficiency of
STATEGUARD in detecting state derailment defects. The de-
tection ACC of STATEGUARD reaches 94.83%, and the recall
rate is 94.82%, indicating that it can accurately identify the
most defects. The precision reaches up to 98.28%, showing
that most defects identified by STATEGUARD are indeed actual.
Moreover, the F1-score is 94.25%, reflecting the comprehensive
performance of STATEGUARD. The FPR is only 0.03%, showing
that STATEGUARD rarely mislabel standard cases containing
defects. It shows that STATEGUARD demonstrates performance
in detecting state derailment defects, characterized by high ACC,
high recall, and markedly low FPR.

Answer to RQ1. The results indicate that STATEGUARD can
identify state derailment defects in the public dataset with
considerable accuracy and low false positive rates.

C. Answer to RQ2: Comparison Experiment

In response to RQ2, most detection tools only analyze indi-
vidual contracts and cannot perform comprehensive detection
on the entire project, while multicontracts in DApps are often
more complex. This complexity arises from the interaction and
dependency between multiple contracts, for which existing tools
provide limited support. Furthermore, although some tools can
support dependency imports, due to differences between these
tools, they require separate adaptation and adjustment for each
tool, which is not only time-consuming but also prone to errors.
To ensure the validity of the experimental outcomes, we follow
the action in [37]. We employ a random sampling strategy to
select 2000 smart contracts exhibiting state derailment from the
SmartBugs dataset. Concurrently, we gather a series of smart
contract defect detection tools from renowned journals and con-
ferences in the fields of software and security (e.g., conference
on computer and communications security (CCS) and automated
software engineering (ASE)), as well as Mythril [38], which is
recommended by the official Ethereum community.

To facilitate comparative analysis, we select eight bench-
mark smart contract detection tools, i.e., Mythril, Oyente [39],
Securify [40], Confuzzius [41], Conkas [42], Manticore [43],
Slither [44], and Smartcheck [45]. During the selection process,
we consider several factors, as follows:

1) the accessibility of the tool’s source code;
2) the tool’s capability to detect defects related to the contract

state;
3) the tool’s support for source code written in solidity;
4) the tool’s ability to report the specific locations of potential

defect code for manual review.
The experimental results are presented in Table III. As with

RQ1, STATEGUARD only identifies whether the contract contains
a defect, so we only count it once if the defect occurs multiple

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Hainan University. Downloaded on December 20,2024 at 02:21:58 UTC from IEEE Xplore. Restrictions apply.

10 IEEE TRANSACTIONS ON RELIABILITY

TABLE III
PERFORMANCE COMPARISON OF RELATED TOOLS

times. Smartcheck indicates that almost all contracts have de-
fects in the dataset. Meanwhile, tools such as Slither and Manti-
core fail to provide results due to compilation errors, timeouts,
or their inability to handle some of the latest versions of smart
contracts. In addition, apart from Securify and STATEGUARD,
the other tools fail to process all contracts. The analysis results
of each tool are filtered, retaining only the valid results to ensure
the fairness of the analysis.

In a comparison experiment, STATEGUARD demonstrates per-
formance metrics. Table III shows that it outperforms other de-
tection tools in several essential performance metrics. Notably,
STATEGUARD has achieved an ACC rate of 91.40% and a recall
rate of 90.40%. At the same time, its Precision is 92.24%, and
the F1-score reaches 91.31%, both showing excellent perfor-
mance. It is particularly noteworthy that the FPR is only 7.60%,
significantly reducing the probability of false positives.

The experimental findings indicate that STATEGUARD can
discover state-related defects that other tools may miss and
exhibit a significant advantage in its overall performance.

Answer to RQ2. The experimental results demonstrate that
STATEGUARD can identify unique state-related defects that
other tools may overlook, and it can also surpass these tools in
several metrics (i.e., accuracy, precision, recall), confirming
its efficacy in complex multicontract environments.

D. Answer to RQ3: Real-World Contract Detection

We randomly select 1596 samples of smart contracts from
Etherscan [46], which cover smart contracts of different sizes.
The sampling methodology we adopt ensures the applicability
and validity of our research results.

We run STATEGUARD to detect these real-world smart con-
tracts, and the results show that STATEGUARD successfully
identifies smart contracts with state derailment defects. We
apply for and obtain CVE certifications for CVE-2023-47033,
CVE-2023-47034, and CVE-2023-47035. This means that they
are recognized security defects that malicious users could ex-
ploit. These defects have been publicized and notified to the
vendor. We have also submitted a detailed security audit report
to Etherscan that includes the smart contract address with the
defect, the exact location of the defect, its property, and the
potential impact. It is worth noting that these defects are not
successfully detected when using the benchmark tool in RQ2.
This indicates that STATEGUARD is more effective in detecting
state derailment defects. The advantage of STATEGUARD is its

TABLE IV
DEFECT PROPORTION

ability to capture the interaction of functions and state variables
in smart contracts through graph structures. In addition, GCN
can learn the structural features of graphs that are difficult
to capture by traditional static analysis or symbolic execution
methods.

In summary, STATEGUARD proves its practicality in detecting
defects in real-world smart contracts and demonstrates good
adaptability to handle smart contracts of various sizes.

Answer to RQ3. STATEGUARD has proven effective in de-
tecting state derailment defects in real-world smart contracts,
as evidenced by its successful identification of several novel
defects that received CVE IDs, which are undetected by other
benchmark tools.

VI. DISCUSSION

In order to understand the state derailment defects in smart
contracts, we perform a detailed statistical analysis of the se-
lected DAppSCAN dataset in Table I. As shown in Table IV,
we collect and count the percentage of each type of defect
in the dataset. As indicated in Table IV, based on the defect
ratio analysis, logical inconsistency is the most important source
of problems, accounting for 51.15% of the state derailment
defects, emphasizing the importance of logical design ACC.
Second, type and declaration errors and resource constraints are
vital issues affecting contract execution efficiency and security.
Exception handling and access control, although accounting
for a lower percentage, are equally important in preventing
potential security breaches. Therefore, the stability and security
of smart contracts are crucial and depend on high-quality code.
To ensure this, comprehensive strategies and measures must be
implemented.

The practical implications of the discovered state derailment
defects in DEXs are profound and multifaceted, impacting both
the security and functionality of these platforms. Logical incon-
sistencies can lead to unintended contract behaviors, potentially
resulting in financial losses for users due to erroneous state up-
dates. Resource constraints highlight the necessity for efficient
contract design to prevent gas limit overconsumption, which
can disrupt contract execution and lead to denial-of-service
scenarios. Access control defects expose DEXs to unauthorized
state modifications, increasing the risk of fraud and asset theft.
Type and declaration errors can cause state inconsistencies,
undermining the reliability of the contract’s operations and po-
tentially leading to exploitations. Finally, inadequate exception

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Hainan University. Downloaded on December 20,2024 at 02:21:58 UTC from IEEE Xplore. Restrictions apply.

LI et al.: GUARDIANS OF THE LEDGER: PROTECTING DECENTRALIZED EXCHANGES FROM STATE DERAILMENT DEFECTS 11

Fig. 11. Code snippets of defective contracts.

Fig. 12. Illustration of the state derailment case.

handling can result in unhandled errors, causing contract failures
and opening avenues for denial-of-service attacks. Collectively,
these defects underscore the critical need for rigorous security
audits and robust contract design practices to ensure the integrity,
reliability, and security of smart contracts within the DEX.

A. Case Analysis

A DEX platform that utilizes smart contracts to enable an
autoliquidity mechanism [47] for token transactions. Fig. 11
shows a simplified code snippet of the state derailment defect.
We explain how an attacker exploits this defect and highlight
the severe consequences that may cause state derailment.

In the ERC20 token standard, the safeTransferFrom
function is a vital interface to transfer tokens between two
addresses. The parameters of this function include the address
of the token contract (_token), the sender’s address (_from),
the recipient’s address (_to), and the amount of tokens to be
transferred (_value). However, this function is defined as pub-
lic, which means that anyone can call this function, potentially
leading to some security issues.

To explain this issue in more detail, we can refer to an example
in Fig. 12. The approve function is another interface in the
ERC20 standard, authorizing other addresses to transfer tokens
on behalf of the victim. In this case, the victim calls theapprove
function and authorizes a certain amount of tokens for the
platform’s smart contract for trading on their platform. However,
the platform’ssafeTransferFrom function does not restrict
the identity of callers. Therefore, the attacker can exploit this
defect by transferring tokens authorized by the victim to their
address through the platform’s smart contract without further
consent from the victim.

Specifically, the attacker effectively operates proxy transfer.
Proxy transfer is an operation in the blockchain, especially in
the ERC20 token standard, where an authorized third party is
allowed us to transfer tokens from one account to another. Since
there is no caller authentication within that particular function
implementation, this allows successful execution where tokens
will be transferred from the victim to the attacker.

B. Limitations and Future Work

Although we have made progress and optimizations in detect-
ing DEX smart contracts, there remain two limitations.

The time complexity of graphical representation is worth
further optimization. DApps are structured with many smart
contracts due to their project form. Therefore, the fan-out nature
of AST results in a complex graphical representation, even
though we have mitigated this problem using graph optimization
methods. The time complexity for processing a subgraph is
O(V + E), whereV is the number of nodes andE is the number
of edges. Suppose we must perform complex analysis tasks
on the AST, such as data dependency or control dependency
analysis. In that case, we may need to traverse the AST multiple
times, increasing the time complexity.

Another area for improvement lies in data processing, which
involves data extraction and selection. Specific account permis-
sions and call relationships from contracts are critical in data
extraction. However, it parses meaningful and highly correlated
features from complex structured data. In data selection, noise
and outliers widely exist in smart contracts, such as unused vari-
ables, dead code, and redundant code, which further increases
the complexity of the task. Therefore, meticulous data process-
ing is required to extract and define these features accurately.

Future work could incorporate more domain knowledge into
graphical representation optimization and data processing, in-
volving closer collaboration with field experts. Moreover, we
plan to explore large language models (LLMs) for smart contract
defect detection.

VII. RELATED WORK

A. Defect Detection Tools

Researchers and developers have designed many defect detec-
tion tools in response to the potential defects in smart contracts.
Solhint [48] is an essential tool for ensuring code quality and
consistency in smart contract compliance checking. Static anal-
ysis tools [49] (i.e., Mythril, Securify, Slither, and SmartCheck)
offer robust defect detection, complemented by dynamic analy-
sis [50] from Manticore Moreover, the comprehensive approach
of MythX [51] combines static and dynamic analysis with
fuzzing techniques. Deep learning and machine learning have
also been utilized, with SaferSc [52] using LSTM networks for
defect detection, while Eth2Vec [53] and ContractWard [54]
leverage machine learning for defect detection in Ethereum
virtual machine bytecode. In addition, VulANalyzeR [55] in-
troduces a novel approach by combining sequential and topo-
logical learning through recurrent units and graph convolution,
effectively simulating program execution to detect defects.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Hainan University. Downloaded on December 20,2024 at 02:21:58 UTC from IEEE Xplore. Restrictions apply.

12 IEEE TRANSACTIONS ON RELIABILITY

Meanwhile, TaintGuard [56] stands out as a cross-contract static
analysis tool designed to prevent implicit privilege leakage in
solidity smart contracts, utilizing taint analysis and instrumen-
tation monitoring to filter call relations for cross-contract calls
and detect problematic paths that may lead to privilege leaks.

B. Security Analysis on DEX

A DEX permits users to trade encrypted assets directly via
smart contracts, circumventing the need for traditional CEXs.
The security of a DEX directly influences the safety of users’
assets, thereby necessitating a thorough security analysis. A
comprehensive security analysis typically encompasses auditing
the DEX’s smart contract, assessing the robustness of its design,
and simulating attack scenarios [57]. Since the DEX operates
on the blockchain, attackers can exploit any security defect,
potentially leading to significant financial losses. Therefore, the
security of smart contracts in DEX is crucial for the safety of
users’ assets. For instance, Duan et al. [10] proposed a program
analysis technique, VetSC, capable of automatically extracting
contract semantics from DApps and performing targeted security
checks. VetSC can identify security risks in real-world DApps
and ensure the security of DApps. Conversely, Li et al. [11]
introduced SolSaviour, a defensive framework designed to repair
and recover deployed flawed smart contracts. SolSaviour pro-
posed a novel mechanism, termed the voteDestruct mechanism,
which enables contract stakeholders to vote on the destruction
of flawed smart contracts. In addition, Xia et al. [3] proposed
a method based on the “guilt-by-association” heuristic and
machine learning techniques to identify fraudulent tokens on
Uniswap from another perspective. This method can accurately
label fraudulent behavior on Uniswap. However, from a distinct
perspective, Geoffrey et al. [1] introduced SPEEDEX to elimi-
nate the prevalent front-running attacks in CEXs and effectively
parallelize transaction processing, achieving high throughput.

VIII. CONCLUSION

In this article, we present the first systematic study of state de-
railment defects in DEX smart contracts. We define and classify
state derailment defects into five categories and provide exam-
ples and detailed analyses for each category. To discover security
issues in DEX contracts, we design and develop STATEGUARD,
a deep learning-based framework for detecting state derailment
defects in DEX projects. We have evaluated STATEGUARD on
two large datasets, i.e., DAppSCAN and Smartbugs. The results
show that STATEGUARD identifies state derailment defects with
92.24% precision and 90.4% recall, outperforming several ex-
isting tools. Furthermore, STATEGUARD can discover defects in
real-world contracts, demonstrating its practicality and effec-
tiveness. As a next step, we plan to explore further leveraging
LLM techniques to enhance our defect detection capabilities.

REFERENCES

[1] G. Ramseyer, A. Goel, and D. Mazières, “SPEEDEX: A scalable,
parallelizable, and economically efficient decentralized EXchange,” in
Proc. 20th USENIX Symp. Networked Syst. Des. Implementation, 2023,
pp. 849–875.

[2] M. V. Xavier Ferreira and D. C. Parkes, “Credible decentralized exchange
design via verifiable sequencing rules,” in Proc. 55th Annu. ACM Symp.
Theory Comput., 2023, pp. 723–736.

[3] P. Xia et al., “Trade or Trick? Detecting and characterizing scam tokens on
uniswap decentralized exchange,” Proc. ACM Meas. Anal. Comput. Syst.,
vol. 5, no. 3, pp. 1–26, 2021.

[4] Medium, “Fixedfloat exploit: Tracing the 26 million lost to the hack,” 2024.
[Online]. Available: https://medium.com/coinmonks/fixed-float-exploit-
tracing-the-26-million-lost-to-the-hack-25fda467b577

[5] T. Chen et al., “Tokenscope: Automatically detecting inconsistent behav-
iors of cryptocurrency tokens in Ethereum,” in Proc. ACM SIGSAC Conf.
Comput. Commun. Secur., 2019, pp. 1503–1520.

[6] G. Yu, S. Zhao, C. Zhang, Z. Peng, Y. Ni, and X. Han, “Code is the
(f) law: Demystifying and mitigating blockchain inconsistency attacks
caused by software bugs,” in Proc. IEEE Conf. Comput. Commun., 2021,
pp. 1–10.

[7] P. Bose, D. Das, Y. Chen, Y. Feng, C. Kruegel, and G. Vigna, “Sailfish:
Vetting smart contract state-inconsistency bugs in seconds,” in Proc. IEEE
Symp. Secur. Privacy (SP), 2022, pp. 161–178.

[8] M. Ye, Y. Nan, Z. Zheng, D. Wu, and H. Li, “Detecting state inconsistency
bugs in Dapps via on-chain transaction replay and fuzzing,” in Proc. 32nd
ACM SIGSOFT Int. Symp. Softw. Testing Anal., 2023, pp. 298–309.

[9] Y. Liu and Y. Li, “Invcon: A dynamic invariant detector for Ethereum
smart contracts,” in Proc. 37th IEEE/ACM Int. Conf. Automated Softw.
Eng., 2023, pp. 1–4.

[10] Y. Duan et al., “Towards automated safety vetting of smart contracts
in decentralized applications,” in Proc. ACM SIGSAC Conf. Comput.
Commun. Secur., 2022, pp. 921–935.

[11] Z. Li, Y. Zhou, S. Guo, and B. Xiao, “SolSaviour: A defending framework
for deployed defective smart contracts,” in Proc. Annu. Comput. Secur.
Appl. Conf., 2021, pp. 748–760.

[12] Z. Li, W. Guo, Q. Xu, Y. Xu, H. Wang, and M. Xian, “Research on
blockchain smart contracts vulnerability and a code audit tool based on
matching rules,” in Proc. Int. Conf. Cyberspace Innov. Adv. Technol., 2021,
pp. 484–489.

[13] G. Wood et al., “Ethereum: A secure decentralised generalised transaction
ledger,” Ethereum Project Yellow Paper, vol. 151, no. 2014, pp. 1–32,
2014.

[14] H. Chen, M. Pendleton, L. Njilla, and S. Xu, “A survey on Ethereum
systems security: Vulnerabilities, attacks, and defenses,” ACM Comput.
Surv., vol. 53, no. 3, pp. 1–43, 2020.

[15] S. Khan, M. Al-Amin, H. Hossain, N. Noor, and M. W. Sadik, “A
pragmatical study on blockchain empowered decentralized application
development platform,” in Proc. Int. Conf. Comput. Advancements, 2020,
pp. 1–9.

[16] P. Garamvölgyi, Y. Liu, D. Zhou, F. Long, and M. Wu, “Utilizing
parallelism in smart contracts on decentralized blockchains by taming
application-inherent conflicts,” in Proc. 44th Int. Conf. Softw. Eng., 2022,
pp. 2315–2326.

[17] Z. Zheng, J. Su, J. Chen, D. Lo, Z. Zhong, and M. Ye, “DAppscan: Building
large-scale datasets for smart contract weaknesses in DApp projects,” IEEE
Trans. Softw. Eng., vol. 50, no. 6, pp. 1360–1373, 2024.

[18] “chainsecurity,” 2024. [Online]. Available: https://chainsecurity.com/
[19] “Runtime verification,” 2024. [Online]. Available: https://

runtimeverification.com/
[20] “Quantstamp,” 2024. [Online]. Available: https://quantstamp.com
[21] “Smartdec,” 2024. [Online]. Available: https://smartdec.net/
[22] V. Dwivedi, V. Pattanaik, V. Deval, A. Dixit, A. Norta, and D. Draheim,

“Legally enforceable smart-contract languages: A systematic literature
review,” ACM Comput. Surv., vol. 54, no. 5, pp. 1–34, 2021.

[23] T. Sharma, Z. Zhou, A. Miller, and Y. Wang, “A mixed-methods study of
security practices of smart contract developers,” in Proc. 32nd USENIX
Secur. Symp. (USENIX Secur.), 2023, pp. 2545–2562.

[24] F. Tchakounté, K. Amadou Calvin, A. A. A. Ari, and D. J. Fotsa Mbogne,
“A smart contract logic to reduce hoax propagation across social media,”
J. King Saud Univ.-Comput. Inf. Sci., vol. 34, no. 6, pp. 3070–3078,
2022.

[25] M. Barboni, A. Morichetta, and A. Polini, “Smart contract testing: Chal-
lenges and opportunities,” in Proc. 5th Int. Workshop Emerg. Trends Softw.
Eng. Blockchain, 2023, pp. 21–24.

[26] N. Ajienka, P. Vangorp, and A. Capiluppi, “An empirical analysis of source
code metrics and smart contract resource consumption,” J. Softw.: Evol.
Process, vol. 32, no. 10, pp. 1–22, 2020.

[27] A. Ghaleb, J. Rubin, and K. Pattabiraman, “AChecker: Statically detecting
smart contract access control vulnerabilities,” in Proc. 45th IEEE/ACM Int.
Conf. Softw. Eng., 2023, pp. 945–956.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Hainan University. Downloaded on December 20,2024 at 02:21:58 UTC from IEEE Xplore. Restrictions apply.

LI et al.: GUARDIANS OF THE LEDGER: PROTECTING DECENTRALIZED EXCHANGES FROM STATE DERAILMENT DEFECTS 13

[28] P. Tolmach, Y. Li, S.-W. Lin, Y. Liu, and Z. Li, “A survey of smart contract
formal specification and verification,” ACM Comput. Surv., vol. 54, no. 7,
pp. 1–38, 2021.

[29] K. Wang, M. Yan, H. Zhang, and H. Hu, “Unified abstract syntax tree rep-
resentation learning for cross-language program classification,” in Proc.
30th IEEE/ACM Int. Conf. Prog. Comprehension, 2022, pp. 390–400.

[30] J. Curtis, “On language-agnostic abstract-syntax trees: Student research
abstract,” in Proc. 37th ACM/SIGAPP Symp. Appl. Comput., 2022,
pp. 1619–1625.

[31] F. Al Debeyan, T. Hall, and D. Bowes, “Improving the performance of
code vulnerability prediction using abstract syntax tree information,” in
Proc. 18th Int. Conf. Predictive Models Data Analytics Softw. Eng., 2022,
pp. 2–11.

[32] K. W. Church, “Word2Vec,” Natural Lang. Eng., vol. 23, no. 1,
pp. 155–162, 2017.

[33] D. S. Asudani, N. K. Nagwani, and P. Singh, “Impact of word embedding
models on text analytics in deep learning environment: A review,” Artif.
Intell. Rev., vol. 56, no. 9, pp. 10345–10425, 2023.

[34] D. Yu, Y. Yang, R. Zhang, and Y. Wu, “Knowledge embedding based graph
convolutional network,” in Proc. Web Conf., 2021, pp. 1619–1628.

[35] Y. Ganin and V. Lempitsky, “Unsupervised domain adaptation by
backpropagation,” in Proc. 32nd Int. Conf. Mach. Learn., 2015,
pp. 1180–1189.

[36] T. Durieux, J. F. Ferreira, R. Abreu, and P. Cruz, “Empirical review of
automated analysis tools on 47,587 Ethereum smart contracts,” in Proc.
42nd ACM/IEEE Int. Conf. Softw. Eng., 2020, pp. 530–541.

[37] S. Yang, J. Chen, and Z. Zheng, “Definition and detection of defects in
NFT smart contracts,” in Proc. 32nd ACM SIGSOFT Int. Symp. Softw.
Testing Anal., 2023, pp. 373–384.

[38] “Mythril,” 2024. [Online]. Available: https://mythril-classic.readthedocs.
io/

[39] L. Luu, D.-H. Chu, H. Olickel, P. Saxena, and A. Hobor, “Making smart
contracts smarter,” in Proc. ACM SIGSAC Conf. Comput. Commun. Secur.,
2016, pp. 254–269.

[40] P. Tsankov, A. Dan, D. Drachsler-Cohen, A. Gervais, F. Buenzli, and M.
Vechev, “Securify: Practical security analysis of smart contracts,” in Proc.
ACM SIGSAC Conf. Comput. Commun. Secur., 2018, pp. 67–82.

[41] C. F. Torres, A. K. Iannillo, A. Gervais, and R. State, “ConFuzzius: A data
dependency-aware hybrid Fuzzer for smart contracts,” in Proc. IEEE Eur.
Symp. Secur. Privacy, 2021, pp. 103–119.

[42] N. Veloso, “Conkas: A modular and static analysis tool for Ethereum
bytecode,” 2023. [Online]. Available: https://github.com/nveloso/conkas/

[43] M. Mossberg et al., “Manticore: A user-friendly symbolic execution
framework for binaries and smart contracts,” in Proc. 34th IEEE/ACM
Int. Conf. Automated Softw. Eng., 2019, pp. 1186–1189.

[44] J. Feist, G. Grieco, and A. Groce, “Slither: A static analysis framework for
smart contracts,” in Proc. 2nd IEEE/ACM Int. Workshop Emerg. Trends
Softw. Eng. Blockchain, 2019, pp. 8–15.

[45] S. Tikhomirov, E. Voskresenskaya, I. Ivanitskiy, R. Takhaviev, E.
Marchenko, and Y. Alexandrov, “SmartCheck: Static analysis of Ethereum
smart contracts,” in Proc. 1st Int. Workshop Emerg. Trends Softw. Eng.
Blockchain, 2018, pp. 9–16.

[46] “Etherscan,” 2024. [Online]. Available: https://etherscan.io/
[47] J. Xu, K. Paruch, S. Cousaert, and Y. Feng, “SoK: Decentralized exchanges

(DEX) with automated market maker (AMM) protocols,” ACM Comput.
Surv., vol. 55, no. 11, pp. 1–50, 2023.

[48] “Solhint,” 2024. [Online]. Available: https://github.com/protofire/solhint/
[49] T. Yin et al., “An empirical study on implicit constraints in smart contract

static analysis,” in Proc. 44th Int. Conf. Softw. Eng.: Softw. Eng. Pract.,
2022, pp. 31–32.

[50] N. F. Samreen and M. H. Alalfi, “SmartScan: An approach to detect
denial of service vulnerability in Ethereum smart contracts,” in Proc. 4th
IEEE/ACM Int. Workshop Emerg. Trends Softw. Eng. Blockchain, 2021,
pp. 17–26.

[51] “Mythx,” 2024. [Online]. Available: https://mythx.io/
[52] W. J.-W. Tann, X. J. Han, S. S. Gupta, and Y.-S. Ong, “Towards safer smart

contracts: A sequence learning approach to detecting security threats,”
2018, arXiv:1811.06632.

[53] N. Ashizawa, N. Yanai, J. P. Cruz, and S. Okamura, “Eth2vec: Learn-
ing contract-wide code representations for vulnerability detection on
Ethereum smart contracts,” in Proc. 3rd ACM Int. Symp. Blockchain Secure
Crit. Infrastructure, 2021, pp. 47–59.

[54] W. Wang, J. Song, G. Xu, Y. Li, H. Wang, and C. Su, “Contractward:
Automated vulnerability detection models for Ethereum smart contracts,”
IEEE Trans. Netw. Sci. Eng., vol. 8, no. 2, pp. 1133–1144, Apr.–Jun. 2021.

[55] L. Li et al., “VulANalyzeR: Explainable binary vulnerability detection
with multi-task learning and attentional graph convolution,” ACM Trans.
Privacy Secur., vol. 26, no. 3, pp. 1–25, 2023.

[56] X. Wu, X. Du, Q. Yang, A. Liu, N. Wang, and W. Wang, “TaintGuard: Pre-
venting implicit privilege leakage in smart contract based on taint tracking
at abstract syntax tree level,” J. Syst. Archit., vol. 141, pp. 102925–102936,
2023.

[57] P. Zheng, Z. Jiang, J. Wu, and Z. Zheng, “Blockchain-based decentralized
application: A survey,” IEEE Open J. Comput. Soc., vol. 4, pp. 121–133,
Mar. 2023.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Hainan University. Downloaded on December 20,2024 at 02:21:58 UTC from IEEE Xplore. Restrictions apply.

